
1/2

June 17, 2019

A simple workaround for the fact that std::equal takes its
predicate by value

devblogs.microsoft.com/oldnewthing/20190617-00

Raymond Chen

The versions of the std::equal function that takes a binary predicate accepts the predicate

by value, which means that if you are using a functor, it will be copied, which may be

unnecessary or unwanted.

In my case, the functor had a lot of state, and I didn’t want to copy it.

class comparer

{

 ...

 template<typename R>

 bool ranges_equiv(R const& left, R const& right)

 {

 using T = typename std::decay_t<decltype(*begin(left))>;

 return std::equal(

 begin(left), end(left),

 begin(right), end(right),

 equiv<T>);

 }

 template<typename T>

 bool equiv(T const& left, T const& right) = delete;

 template<>

 bool equiv(Doodad const& left, Doodad const& right)

 {

 return (!check_names || equiv(left.Name(), right.Name())) &&

 (!check_children || ranges_equiv(left.Children(), right.Children()));
 }

 ... other overloads omitted ...

};

The idea behind the comparer is that you configure it with information about what you care

about and what you don’t, and then you call equiv and let it walk the object hierarchy

comparing the things you asked for according to the rules you specified.

https://devblogs.microsoft.com/oldnewthing/20190617-00/?p=102595

2/2

This works great, except that std::equal copies its predicate, and our comparer is

somewhat expensive to copy, since it may have lots of configuration std::string s and

stuff. What we’re looking for is a version that takes the predicate by reference, so that we can

use the same comparer all the way down.

The workaround is to replace the predicate with something that is cheap to copy.

 template<typename R>

 bool ranges_equiv(R const& left, R const& right)

 {

 return std::equal(

 begin(left), end(left),

 begin(right), end(right),

 [this](auto&& l, auto&& r) { return equiv(l, r); });

 }

Instead of passing a full comparer object, we pass a lambda that captures the comparer ‘s

this pointer. This lambda is cheap to copy, and it allows us to reuse the same comparer

all the way down the object hierarchy.

This solution looks obvious in retrospect, but I got all hung up trying to create a cheap

copyable object, like a nested type called compare_forwarder that kept a

std::reference_wrapper to the comparer , before realizing that I was just writing a

verbose version of a lambda.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

