Programming puzzle: Creating a map of command
handlers given only the function pointer

=. devblogs.microsoft.com/oldnewthing/20190527-00

May 27, 2019

-
Raymond Chen

Suppose you have some sort of communication protocol that sends packets of binary-
encoded information. There is some information at the start of the packet that describe what
command is being sent, and the rest of the bytes in the packet describes the parameters to
the command.

The puzzle is to come up with a generic dispatcher that accepts command / handler pairs and

does the work of extracting the command parameters from the packet and calling the
handler.

You are given this class:

class Packet

{
public:
int32_t ReadInt32();
uint32_t ReadUInt32();
int8_t ReadInt8();
std::string ReadString();
. and so on ...

1

The Read methods parse the next bytes in the packet and produces a corresponding object.
Sometimes the object is simple, like an integer. Sometimes it’s complicated, like a string.
Don’t worry about the details of the parsing; the Packet object will do it.

The puzzle is to implement the Dispatcher class:

class Dispatcher

{

public:
void AddHandler(uint32_t command, ??? SOMETHING ??7?);
void DispatchCommand(uint32_t command, Packet& packet);

}

The intended usage is like this:

1/8

https://devblogs.microsoft.com/oldnewthing/20190527-00/?p=102518

// Some handler functions

void HandleFoo(int32_t, int32_t);
void HandleBar (int32_t);

void HandleBaz(int32_t, std::string);

// Command 0@ is the "Foo" command that takes
// two 32-bit integers.
dispatcher.AddHandler (0, HandleFoo);

// Command 1 is the "Bar" command that takes
// one 32-bit integer.
dispatcher.AddHandler (1, HandleBar);

// Command 4 is the "Baz" command that takes
// a 32-bit integer and a string.

dispatcher.AddHandler (4, HandleBaz);

// We received a packet. Dispatch it to a handler.
dispatcher.DispatchCommand(command, packet);

The DispatchCommand method looks up the commandId and executes the corresponding
handler. In this case, the effect would be as if the DispatchCommand were written like this:

void DispatchCommand(uint32_t command, Packet& packet)

{
switch (command) {
case 0:
{
auto paraml = packet.ReadInt32();
auto param2 = packet.ReadInt32();
HandleFoo(paraml, param2);
break;
}
case 1:
{
auto paraml = packet.ReadInt32();
HandleBar (paraml);
break;
}
case 4:
{

auto paraml = packet.ReadInt32();
auto param2 = packet.ReadString();
HandleFoo(paraml, param2);

break;

}

default: std::terminate();

b
3

2/8

For the purpose of the puzzle, we won’t worry too much about the case where an invalid
command is received. The puzzle is really about the dispatching of valid commands.

Okay, let’s roll up our sleeves. One way to attack this problem is to do it in a way similar to
how we implemented message crackers for Windows messages: Write a custom dispatcher
for each function signature.

class Dispatcher

{

std::map<uint32_t, std::function<void(Packet&)>> commandMap;

public:
void AddHandler (uint32_t command, void (*func)(int32_t, int32_t))
{
commandMap .emplace(command, [func](Packet& packet) {
auto paraml = packet.ReadInt32();
auto param2 = packet.ReadInt32();
func(paraml, param2);

)
}

void AddHandler (uint32_t command, void (*func)(int32_t))
{
commandMap.emplace(command, [func](Packet& packet) {
auto paraml = packet.ReadInt32();
func(paraml);

)
}

void AddHandler (uint32_t command, void (*func)(int32_t, std::string))
{

commandMap.emplace(command, [func](Packet& packet) {

auto paraml = packet.ReadInt32();

auto param2 = packet.ReadString();

func(paraml, param2);

1)
}

. and so on

void DispatchCommand(uint32_t command, Packet& packet)

{
auto it = commandMap.find(command);
if (it == commandMap.end()) std::terminate();
it->second(packet);
}
}

We write a version of AddHandler for each function signature we care about, and adding a
handler consists of creating a lambda which which extracts the relevant parameters from the
packet and then calls the handler. These lambdas are captured intoa std::function and

3/8

saved in the map for future lookup.

The problem with this technique is that it’s tedious writing all the lambdas, and the

Dispatcher class needs to know up front all of the possible function signatures, so it can
had an appropriate AddHandler overload. What would be better is if the compiler could
write the lambdas automatically based on the parameters to the function. This avoids having
to write out all the lambdas, and it means that the Dispatcher can handle arbitrary
function signatures, not just the ones that were hard-coded into it.

First, we write some helper functions so we can invoke the Read methods more template-y-
like.

template<typename T> T Read(Packet& packet) = delete;

template<> int32_t Read<int32_t>(Packet& packet)
{ return packet.ReadInt32(); }

template<> uint32_t Read<uint32_t>(Packet& packet)
{ return packet.ReadUInt32(); }

template<> int8_t Read<int8_t>(Packet& packet)
{ return packet.ReadInt8(); }

template<> std::string Read<std::string>(Packet& packet)
{ return packet.ReadString(); }

. and so on ...

If somebody needs to read a different kind of thing from a packet, they can add their own
specialization of the Read function template. They don’t need to come back to you to ask
you to change your Dispatcher class.

Now the hard part: Autogenerating the lambdas.

We want a local variable for each parameter. The template parameter pack syntax doesn’t let
us create a variable number of variables, but we can fake it by putting all the variables into a
tuple.

template <typename... Args>
void AddHandler (uint32_t command, void(*func)(Args...))
{

commandMap .emplace(command, [func](Packet& packet) {
auto args = std::make_tuple(Read<Args>(packet)...);
std::apply(func, args);
}
}

4/8

The idea here is that we create a tuple, each of whose components is the next parameter read
from the packet. The templatized Read method extracts the parameter from the packet. We
take all those parameters, bundle them up into a tuple, and then std::apply the function
to the tuple, which calls the function with the tuple as arguments.

Unfortunately, this doesn’t work because it relies on left-to-right order of evaluation of
parameters, which C++ does not guarantee. (And in practice, it often isn’t.)

We need to build up the tuple one component at a time.

template<typename First, typename... Rest>
std::tuple<First, Rest...>
read_tuple(Packet& packet)
{
auto first = std::make_tuple(Read<First>(packet));
return std::tuple_cat(first, read_tuple<Rest>(packet));

}
std::tuple<> read_tuple(Packet& packet)
{
return std::tuple<>();
}
template <typename... Args>
void AddHandler (uint32_t command, void(*func)(Args...))
{

commandMap .emplace(command, [func](Packet& packet) {
auto args = read_tuple(packet);
std::apply(func, args);
+i
}

We use the standard template metaprogramming technique of employing recursion to
process each template parameter one at a time. You must resist the temptation to simplify

auto first = std::make_tuple(Read<First>(packet));
return std::tuple_cat(first, read_tuple<Rest>(packet));

to

return std::tuple_cat(std::make_tuple(Read<First>(packet)),
read_tuple<Rest>(packet));

because that reintroduces the order-of-evaluation problem the read tuple function was
intended to solve!

The attempted solution doesn’t compile because you can’t do this sort of recursive template
stuff with functions. (I'm not sure why.) So we’ll have to wrap it inside a templatized helper
class.

5/8

template<typename... Args>
struct tuple_reader;

template<>
struct tuple_reader<>

{
static std::tuple<> read(Packet&) { return {}; }

};

template<typename First, typename... Rest>
struct tuple_reader<First, Rest...>

{
static std::tuple<First, Rest...> read(Packet& packet)

{
auto first = std::make_tuple(Read<First>(packet));

return std::tuple_cat(first,
tuple_reader<Rest...>::read(packet));
}
+i

template <typename... Args>
void AddHandler (uint32_t command, void(*func)(Args...))

{

commandMap.emplace(command, [func](Packet& packet) {
auto args = tuple_reader<Args...>::read(packet);
std::apply(func, args);
}i
}

We start by defining our tuple reader helper template class as one with a variable
number of template parameters.

Next comes the base case: There are no parameters at all. In that case, we return an empty
tuple.

Otherwise, we have the recursive case: We peel off the first template parameter and use it to

Read the corresponding actual parameter from the packet. Then we recursively call
ourselves to read the remaining parameters from the packet. And finally, we combine our
actual parameter with the tuple produced by the remaining parameters, resulting in the
complete tuple.

The std:: tuple_ cat function requires tuples, so we take our first parameter and put it
in a one-element tuple, so that we can concatenate the second tuple to it.

Now I'm going to pull a sneaky trick and combine the forward declaration with the recursion
base case:

6/8

// Delete

//

// template<typename... Args>
// struct tuple_reader;

//

// template<>

// struct tuple_reader<>

/7 {
// static std::tuple<> read(Packet&) { return {3}; }
/7 };
template<typename... Args>
struct tuple_reader
{
static std::tuple<> read(Packet&) { return {3}; }
}

This trick works because the only thing that will match the template instantiation is the zero-
parameter case. If there is one or more parameter, then the First, Rest... version will
be the one chosen by the compiler.

We’re almost there. If one of the parameters is non-copyable, the above solution won’t work
because the first ispassed bycopyto std::tuple_ cat ,andthe args is passed by
copyto std::apply .

Even if the parameters are all copyable, the std::move is helpful because it avoids
unnecessary copies. For example, if a very large string was passed in the packet, we don’t
want to make a copy of the large string just so we can pass it to the handler function. We just
want to let the handler function use the string we already read.

To fix that, we do some judicious std::move ing.

7/8

template<typename... Args>
struct tuple_reader

{
static std::tuple<> read(Packet&) { return {3}; }

1

template<typename First, typename... Rest>
struct tuple_reader<First, Rest...>

{
static std::tuple<First, Rest...> read(Packet& packet)

{
auto first = std::make_tuple(Read<First>(packet));

return std::tuple_cat(std::move(first), // moved
tuple_reader<Rest...>::read(packet));

}
};

template <typename... Args>
void AddHandler (uint32_t command, void(*func)(Args...))

{

commandMap.emplace(command, [func](Packet& packet) {
auto args = tuple_reader<Args...>::read(packet);
std::apply(func, std::move(args)); // moved
}
}

The AddHandler method could be condensed slightly, which also saves us the trouble of
having to std::move the tuple explicitly.

std::apply(func, tuple_reader<Args...>::read(packet));

Exercise 1: Change the tuple reader so it evaluates the template parameters from
right to left.

Exercise 2: Suppose the Packet has methods for sending a response to the caller. In that
case, the handler should receive a Packet& as its first parameter, before the other optional
parameters. Extend the above solution to support that.

Exercise 3: (Harder.) Extend the above solution to support passing an arbitrary function
object as a handler, such as alambda or std::function .

Raymond Chen

Follow

8/8

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

