
1/4

May 23, 2019

Windows Runtime delegates and object lifetime in
C++/CX

devblogs.microsoft.com/oldnewthing/20190523-00

Raymond Chen

In C++/CX, there are two ways to create event handlers: As an (object, method) pair, or as a

lambda. And the lifetime rules are different depending on how you do it.

When you create a delegate with an object and a method, the object is captured by weak

reference. When the delegate is invoked, the runtime first attempts to resolve the weak

reference back to a strong reference. If successful, then it calls the method. If not successful,

it raises the Platform:: DisconnectedException , which we saw earlier is a signal to the

event source that the delegate should be auto-unregistered because it will never succeed

again.

When you create a delegate with a lambda, you capture objects into your lambda, and those

objects remain alive for as long as the delegate exists. For event handlers, the delegate

generally¹ continues to exist until the handler is unregistered. In C++/CX, hat pointers are

strong references, so if you capture a hat pointer, you captured a strong reference to the

object. In particular, in methods on ref classes, this is a hat pointer to the enclosing class,

so capturing this captures a strong reference to the enclosing class. This is called out in the

documentation:

A named function captures the “this” pointer by weak reference, but a lambda captures it by
strong reference and creates a circular reference.

The documentation here is being a bit presumptive that the object captured in the lambda in

turn contains a reference to the object that holds the delegate. If that’s not the case, then you

don’t have an (immediate) circular reference.

https://devblogs.microsoft.com/oldnewthing/20190523-00/?p=102514
https://devblogs.microsoft.com/oldnewthing/20190521-00/?p=102505
https://docs.microsoft.com/en-us/cpp/cppcx/delegates-c-cx?view=vs-2017

2/4

using namespace Windows::Devices::Enumeration;

ref class Circular

{

 DeviceWatcher^ watcher;

public:

 Circular()

 {

 watcher = DeviceInformation::CreateWatcher();

 watcher.Added += ref new TypedEventHandler<

 DeviceWatcher^, DeviceInformation^>(

 [this](DeviceWatcher^ sender, DeviceInformation^ info)

 {

 ...

 });

 }

};

The above example creates a C++/CX delegate with a lambda, and that lambda captured

this . Since this is a ref class, a strong reference was captured into the lambda, and we have

created a circular reference:

 delegate

 ↗︎ ↘︎

DeviceWatcher ← Circular

As with C#, you will have to break this circular reference manually. You can’t break the arrow

from the delegate to the Circular object (since it’s captured inside the lambda), so your

choices are to unregister the delegate from the event (breaking the arrow from the Device‐

Watcher to the delegate) or to null out the Circular object’s reference to the Device‐

Watcher .

On the other hand, this version creates the delegate with an object and a method pointer:

3/4

ref class Circular

{

 DeviceWatcher^ watcher;

public:

 Circular()

 {

 watcher = DeviceInformation::CreateWatcher();

 watcher.Added += ref new TypedEventHandler<

 DeviceWatcher^, DeviceInformation^>(

 this, &Circular::OnDeviceAdded);

 }

private:

 void OnDeviceAdded(DeviceWatcher^ sender, DeviceInformation^ info)

 {

 ...

 }

};

The object is captured by weak reference into the delegate, which means that there is no

circular reference.

Note that capturing the object by weak reference means that the delegate will not keep the

object alive. If you want the object to remain alive, you’ll have to keep it alive yourself.

A final note is that when an event handler is created via XAML markup, the resulting

delegate is of the (object, method) variety.

<!-- XAML -->

<Page x:Name="AwesomePage" ...>

 ...

 <Button Click="Button_Click" >

 ...

</Page>

When you write the above XAML, the delegate is created as if you had written

thatButton.Click += ref new EventHandler<RoutedEventArgs^>

 (this, &AwesomePage::Button_Click);

So you don’t have to worry about circular references created by XAML markup event

handlers.

¹ Naturally, you can extend the lifetime of the delegate by keeping an explicit reference to the

delegate after you create it. But people rarely do that, and if you do, you know what you

signed up for.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

