
1/3

May 22, 2019

Windows Runtime delegates and object lifetime in C# and
other GC languages

devblogs.microsoft.com/oldnewthing/20190522-00

Raymond Chen

In C# and other GC languages such as JavaScript, delegates (most typically used as event

handlers) capture strong references to objects in their closures. This means that you can

create reference cycles that are beyond the ability of the GC to collect.

using Windows.Devices.Enumeration;

class Circular

{

 DeviceWatcher watcher;

 public Circular()

 {

 watcher = DeviceInformation.CreateWatcher();

 watcher.Added += OnDeviceAdded;

 }

 void OnDeviceAdded(DeviceWatcher sender, DeviceInformation info)

 {

 ...

 }

}

The Circular class contains a reference to a DeviceWatcher , which in turn contains a

reference (via the delegate) back to the Circular . This circular reference will never be

collected because one of the participants is a DeviceWatcher , which is beyond the

knowledge of the garbage collector.

From the garbage collector’s point of view, the system looks like this:

? → delegate → Circular → DeviceWatcher

https://devblogs.microsoft.com/oldnewthing/20190522-00/?p=102511

2/3

The garbage collector has full knowledge of the green boxes “delegate” and “Circular” because

they are CLR objects. The garbage collector does not know about the dotted-line boxes

because they are external objects beyond the scope of the CLR.

What the garbage collector knows is that there is an outstanding reference to the delegate

from some unknown external source, and it knows that that delegate has a reference to the

Circular object, and it knows that the Circular object has a reference to some external

object that goes by the name of DeviceWatcher . but it has no insight into what the

DeviceWatcher object may have references to, because the DeviceWatcher is not a CLR

object. It has no idea that the DeviceWatcher was in fact the question mark the whole

time.¹

To avoid a memory leak, you will have to break this circular reference. Ideally, there is some

natural place to do this cleanup. For example, if you are a Page , you can clean up in your

OnNavigatedFrom method, or in response to the Unloaded event. Less ideally, you could

add a cleanup method, possibly codified in the IDisposable pattern.

There is a special case: The XAML framework has a secret deal with the CLR, whereby XAML

shares more detailed information about the references it holds. This information makes it

possible for the CLR to break certain categories of circular references that are commonly-

encounted in XAML code. For example, this circular reference can be detected by the CLR

with the assistance of information provided by the XAML framework:

<!-- XAML -->

<Page x:Name="AwesomePage" ...>

 ...

 <Button x:Name="SomeNamedButton" ... >

 ...

</Page>

// C# code-behind

partial class AwesomePage : Page

{

 AwesomePage()

 {

 InitializeComponent();

 SomeNamedButton.Click += SomeNamedButton_Click;

 }

 void SomeNamedButton_Click(object sender, RoutedEventArgs e)

 {

 ...

 }

}

3/3

There is a circular reference here between the AwesomePage and the SomeNamedButton ,

but the extra information provided by the XAML framework gives the CLR enough

information to recognize the cycle and collect it when it becomes garbage.

¹ “It was the question mark all along” sounds like the spoiler to a bad M. Night Shyamalan

movie.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

