
1/2

May 20, 2019

If each thread’s TEB is referenced by the fs selector, does
that mean that the 80386 is limited to 1024 threads?

devblogs.microsoft.com/oldnewthing/20190520-00

Raymond Chen

Commenter Waleri Todorov recalled that the global descriptor table (GDT), which is one of

the places that selectors are defined, is limited to 1024 selectors. Does that mean that there is

a hard limit of 1024 threads?

The question was in the context of how Windows NT for the 80386 managed the thread

environment block (TEB), namely, by using the fs register to point to the per-thread data.

The point is that there are at most 1024 possible distinct values for the fs register to have,

so does this implicitly limit the number of threads to 1024?

No, it doesn’t, because nobody said that the distinct values had to be different

simultaneously.

Let’s start with a single-processor system. That single processor is executing only one thread

at a time, so there needs to be only one valid value for fs at a time. When the processor

changes threads, the definition of that selector is updated to refer to the TEB for the

incoming thread. Using selectors to access another thread’s TEB is not part of the ABI; all

that is required is that you can use fs to access your own TEB.

You can see this in the debugger. Break into a multithreaded program and look at the value of

the fs register. On my system it’s 0x0053 . Switch to another thread and look at the value

of the fs register. It’s the same value: 0x0053 . Every thread has the same selector in fs .

What happens is that each time the processor changes threads, the GDT entry for 0x0053 is

updated to refer to the TEB of the thread that is being scheduled.¹

This trick works even on multiprocessor systems. Each processor has its own GDTR internal

register, so instead of sharing a single GDT for all processors, you can give each processor its

own GDT.

So I guess this puts the theoretical maximum number of processors supported by an x86-

based system at around twenty-four million, because that would exhaust all of kernel mode

address space just for GDTs.²

https://devblogs.microsoft.com/oldnewthing/20190520-00/?p=102503

2/2

No, wait, that’s still not the limit, because each processor also gets its own page table. After

all, that’s how two processors can be executing threads from different processes (and

therefore in different address spaces). So the theoretical limit is basically until you run out of

memory.

But I suspect you’ll run into other problems long before you add that twenty-four-millionth

processor.

¹ Bit 2 is clear for GDT selectors and set for LDT selectors, so you can infer that 0x0053 is a

GDT selector.

² I calculated this by dividing 2³¹ by 0x60 , which is my presumed minimum size for a GDT.

A selector whose numeric value is 0x0053 implies that the GDT is at least 0x0058 bytes in

size, because that’s how big you need to be to get to a selector value of 0x0053 in the first

place.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

