
1/3

May 13, 2019

Mundane git commit-tree tricks, Part 6: Resetting by
reusing an earlier tree

devblogs.microsoft.com/oldnewthing/20190513-00

Raymond Chen

Suppose you have a branch in which you have been doing a bunch of work, you’ve been

merging regularly from the main branch to stay up to date, and you realize that your work

should be abandoned, and the branch reset to a state as if it had been freshly-created from

the main branch.

For most people, that would mean simply abandoning the branch and creating a new one.

Unfortunately, Windows hasn’t quite reached the point where it can use trunk-based

development. Thousands of developers working in a branch with three million files means

that there would be commits going into the main branch pretty much continuously. Instead,

Windows uses a variant of the dictator-lieutenant workflow. Setting up a new lieutenant

involves a lot of paperwork,¹ and teams often want to avoid that paperwork by finding an

existing no-longer-needed lieutenant and giving it a new purpose.

When you do that, you want to clean out any changes from the lieutenant that were part of its

former purpose, so that the new purpose gets a fresh start, as if it were using a branch new

lieutenant.

This is where git commit-tree once again comes in handy.

M1 ← M2 ← M3 ← M4 ← M5

 ↖︎ ↖︎

 L1 ← L2 ← L3 ← L4

Suppose this is the state of the project at the time the team decides to repurpose its

lieutenant. It had been doing some work in that branch (L1 through L4) that it wants to

abandon and pretend never happened.

https://devblogs.microsoft.com/oldnewthing/20190513-00/?p=102490
https://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows

2/3

Windows has a policy that official branches may not rewrite history,² so a hard-reset is not

permitted.

Find the most recent commit in the main branch which has been merged into the lieutenant

branch. You can look into the lieutenant’s record keeping, or the git merge-base

command will tell you. In our case, the commit is M3.

You can now wipe out all of the work done in commits L1 through L4 by committing the tree

that matches the commit you most recently merged from the main branch.

git commit-tree M3^{tree} -p L4 -m "Reset to M3"

This prints a hash that you can fast-forward to.

git merge --ff-only 〈hash〉

This tree-based merge is the trick I referred to some time ago in the context of forcing a patch

branch to look like a nop. In that diagram, we started with a commit A and cherry-picked a

patch P so we could use it to patch the master branch. Meanwhile, we also want a nop to go

into the feature branch. We did it with a git revert , but you can also do it in a no-touch

way by committing trees.

git commit-tree A^{tree} -p P -m "Revert P"

By doing it this way, you are guaranteed that the trees A and P2 are absolutely identical,

because we created them that way.

Note that in both of these cases, if you are already checked out to the branch you want to roll

back, you can use a different command sequence:

git read-tree 〈hash〉

git commit -m "Reset to 〈hash〉"

An alternative that uses more conventional commands (but which temporarily moves your

HEAD):

git reset --hard 〈hash〉

git reset --soft @{1}

git commit -m "Reset to 〈hash〉"

However you manage to do it, once you get your branch reset, you can submit a pull request

back to the main branch with your freshly-reset lieutenant. This should result in a nop

change (no files changed), with a payload consisting of L1 through L4, plus a massive commit

of that wipes out all the custom changes.

Merging back to the main branch serves a few purposes:

https://blogs.msdn.microsoft.com/oldnewthing/20180316-00/?p=98255

3/3

The emptiness of the pull request validates that your lieutenant branch has been

properly reset.

Payload tracking tools will report that your (now-abandoned) L1 through L4 payload

has reached the main branch. Putting them all inside a “nothing happened” pull request

makes it easier to prove that those changes were indeed abandoned.

Your next pull request from the lieutenant to the main branch will consist solely of the

new work.

¹ Part of the reason for the paperwork is that a lieutenant doesn’t get just a branch. A

lieutenant also gets build resources, artifact retention policy, automated testing resources, a

feature flag environment, and lots of other goodies. Besides, you need to know some basic

information, like who to contact if there is a problem with their branch.

² I suspect many organizations have similar policies, You need to be able to recover the

source code that produced any particular build. You also have to be able to identify all the

changes that went into a particular build (say, when investigating a regression). Rewriting

history undermines those principles.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20130820-00/?p=3453
http://code.flickr.net/2009/12/02/flipping-out/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

