
1/3

May 1, 2019

Async-Async: Consequences for parameters to parallel
asynchronous calls

devblogs.microsoft.com/oldnewthing/20190501-00

Raymond Chen

Last time, we learned about a feature known as Async-Async which makes asynchronous

operations even more asynchronous by pretending that they started before they actually did.

The introduction of Async-Async is intended to be transparent to both the client and the

server, provided they were following the rules to begin with. Of course, if you weren’t

following the rules, then you may notice some side effects.

From the client side, it means that you cannot mutate the parameters of an asynchronous

operation until the operation completes. This was never permitted to begin with, but people

sometimes got away with it because they “knew” that certain parameters were consumed

before the initial method returned an asynchronous operation.

// Code in italics is wrong.

// Create three widgets in parallel.

var options = new WidgetOptions();

// Create a blue widget.

options.Color = Colors.Blue;

var task1 = Widget.CreateAsync(options);

// Create another blue widget.

var task2 = Widget.CreateAsync(options);

// Create a red widget.

options.Color = Colors.Red;

var task3 = Widget.CreateAsync(options);

// Wait for all the widgets to be created.

await Task.WhenAll(task1, task2, task3);

// Get the widgets.

var widget1 = task1.Result;

var widget2 = task2.Result;

var widget3 = task3.Result;

https://devblogs.microsoft.com/oldnewthing/20190501-00/?p=102463
https://devblogs.microsoft.com/oldnewthing/20190430-35/?p=102460

2/3

This code “knows” that the Widget. CreateAsync method looks at the options.Color

before it returns with an IAsyncOperation . It therefore “knows” that any changes to the

options after Widget. CreateAsync returns will not have any effect on the widget being

created, so it goes ahead and reconfigures the options object so it can be used for the third

widget.

This code does not work when Async-Async is enabled. The calls to Widget. CreateAsync

will return immediately with fake IAsyncOperation s, while the real calls to

Widget. CreateAsync are still in progress. As we saw earlier, the result of the real call to

Widget. CreateAsync will be connected to the fake IAsyncOperation so that you get

the result you want, but the timing has changed to improve performance. If the above code

manages to change the options. Color to red before one of the first two real calls to

Widget. CreateAsync reads the options, then one or both of the first two widgets will end

up red rather than blue.

This is basically a case of violating one of the basic ground rules for programming: You

cannot change a parameter while the function call is in progress. It’s just that for

asynchronous operations, the “in progress” extends all the way through to the completion of

the asynchronous operation.

It’s fine to kick off multiple asynchronous operations. Just make sure they don’t interfere

with each other.

// Create three widgets in parallel.

var options = new WidgetOptions();

// Create a blue widget.

options.Color = Colors.Blue;

var task1 = Widget.CreateAsync(options);

// Create another blue widget.

var task2 = Widget.CreateAsync(options);

// Create a red widget.

options = new WidgetOptions();

options.Color = Colors.Red;

var task3 = Widget.CreateAsync(options);

// Wait for all the widgets to be created.

await Task.WhenAll(task1, task2, task3);

// Get the widgets.

var widget1 = task1.Result;

var widget2 = task2.Result;

var widget3 = task3.Result;

https://blogs.msdn.microsoft.com/oldnewthing/20060320-13/?p=31853

3/3

This time, we create a new WidgetOptions object for the final call to Widget.Create‐

Async . That way, each call to Widget. CreateAsync gets an options object that is

stable for the duration of the call. It’s okay to share the options object among multiple

calls (like we did for the first two blue widgets), but don’t change them while there is still an

asynchronous operation that is using them.

Of course, once the operation completes, then you are welcome to do whatever you like to the

options , since the operation isn’t using them any more.

// Create three widgets in series.

var options = new WidgetOptions();

// Create a blue widget.

options.Color = Colors.Blue;

var widget1 = await Widget.CreateAsync(options);

// Create another blue widget.

var widget2 = await Widget.CreateAsync(options);

// Create a red widget.

options.Color = Colors.Red;

var widget3 = await Widget.CreateAsync(options);

In this case, we created the widgets in series. We changed the options after awaiting the

result of the operation, so we know that the operation is finished and it is safe to modify the

options for a new call.

Next time, we’ll look at another consequence of Async-Async.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

