
1/5

April 30, 2019

Async-Async: Reducing the chattiness of cross-thread
asynchronous operations

devblogs.microsoft.com/oldnewthing/20190430-00

Raymond Chen

The Windows Runtime expresses the concept of asynchronous activity with the IAsync‐

Operation<T> and IAsyncAction interfaces. The former represents an operation that

completes asynchronously with a result of type T . The latter represents an operation that

completes asynchronously with no result; you can think of it as IAsyncOperation<void> .

In fact, let’s just treat it as such for the purpose of this discussion.

When you call a method like DoSomethingAsync , it returns an instance of the IAsync‐

Operation interface. All of the details of the IAsyncOperation interface are normally

hidden from the developer by the language projection. If you are writing in C#, you see a

Task ; in JavaScript, you get a Promise . In C++/WinRT and C++/CX, you co_await

IAsyncOperation , and the co_await machinery hides the details. In C++/CX, you can

also convert the IAsyncOperation into a concurrency:: task , and then schedule your

continuation that way.

But today, we’re going to look at how things work under the covers.

At the raw interface level, asynchronous operations work like this. In the diagrams, a solid

arrow represents a call, and a dotted arrow represents the return from that call.

Client Server

DoSomethingAsync() → Start operation

 ⇠ return IAsyncOperation

put_Completed(callback) →

 ⇠ return

Release() →

 ⇠ release IAsyncOperation

https://devblogs.microsoft.com/oldnewthing/20190430-00/?p=102460

2/5

… time passes …

Operation completes

 ← callback.Invoke()

get_Status() →

 ⇠ return Completed (or Error)

GetResults() →

 ⇠ return results

callback returns ⇢ IAsyncOperations is destroyed

When the client calls the DoSomethingAsync() method, the call is sent to the server, which

starts the operation and returns an IAsyncOperation which represents the operation in

progress.

The client calls the IAsyncOperation:: put_ Completed method to specify a callback

that will be invoked when the operation is complete, thereby allowing the client to resume

execution when the operation is complete. The server saves this callback and returns.

The client releases the IAsyncOperation , since it no longer needs it. The operation itself

keeps the IAsyncOperation alive.

Time passes, and eventually the operation is complete.

The server invokes the callback to let it know that the operation is complete. The client

receives a reference to the original IAsyncOperation as part of the callback. The client can

interrogate the IAsyncOperation to determine whether the operation was successful or

not, and if successful, what the result was.

Finally, when the callback returns, there are no more outstanding reference to the IAsync‐

Operation , so it destroys itself.

You may have noticed that this is a very chatty interface between the client and server. I

mean, look at all those arrows!

Enter Async-Async.

Async-Async interposes layers on both the client and server which do local caching. The layer

returns a fake async operation to the client and provides a fake client to the server.

Client Client Layer Server Layer

https://blogs.msdn.microsoft.com/oldnewthing/20160212-00/?p=93013

3/5

DoSomethingAsync() → create fake
IAsyncOperation

 ⇠ return fake
IAsyncOperation

→ fake client

put_Completed(callback) → save in fake
IAsyncOperation

 ⇠ return put_Completed(private

Release() →

 ⇠ release fake IAsync‐
Operation

 Release()

… time passes …

Operation completes

 get_Status()

 GetResults()

 ⇠ return status and results

 cache status and
results

 ← callback.Invoke() private returns

get_Status() →

 ⇠ return cached status

GetResults() →

 ⇠ return cached results

callback returns ⇢ fake IAsync‐
Operation is
destroyed

4/5

With Async-Async, the client’s call to DoSomethingAsync() creates a fake IAsync‐

Operation on the client side. This fake IAsyncOperation makes a call out to the server to

initiate the operation, but doesn’t wait for the server to respond to the request. Instead, the

fake IAsyncOperation immediately returns to the client.

As before, the client calls IAsyncOperation:: put_ Completed method to specify a

callback that will be invoked when the operation is complete, thereby allowing the client to

resume execution when the operation is complete. The fake IAsyncOperation saves this

callback and returns.

The client releases the fake IAsyncOperation , since it no longer needs it. The operation

itself keeps the IAsyncOperation alive.

Meanwhile, the request from the fake IAsyncOperation reaches the server, where a fake

client is constructed. This fake client asks the real server to start the operation, and it

registers its own private callback to be notified when the operation is complete, and then it

releases the IAsyncOperation .

Time passes, and eventually the operation is complete.

The server invokes the callback to notify the fake client that the operation is complete. The

fake client immediately retrieves the status and result, and transmits both to the fake

IAsyncOperation , thereby completing the asynchronous call that was initiated by the fake

IAsyncOperation at the start.

The fake client then returns from its callback, and everything on the server side is now all

done.

Meanwhile, the fake IAsyncOperation has received the operation’s status and result and

invokes the client’s callback. As before, the client calls the IAsync‐

Operation:: get_ Status() method to find out whether the operation was successful or

not, and it calls the IAsyncOperation:: GetResults() method to obtain the results of

the asynchronous operation from the fake IAsyncOperation . The client returns from its

callback, and everything on the client side is now all done.

This interface is much less chatty. There is only one call from the client to the server (to start

the operation), and only one call from the server back to the client (to indicate the status and

result of the operation). All the rest of the calls are local and therefore fast.

From the client’s perspective, Async-Async takes asynchronous operations and makes them

even more asynchronous: Not only does the operation itself run asynchronously, even the

starting of the operation takes place asynchronously. This gives control back to the client

sooner, so it can do productive things like, say, running other ready tasks.

5/5

Note that Async-Async comes into play only when the method call needs to be marshaled. If

the client and server are on the same thread, then there is no need for Async-Async because

the calls are all local already.

Async-Async was introduced in Windows 10, and it is enabled for nearly all Windows-

provided asynchronous operations. There are some methods that do not use Async-Async

because they need to start synchronously; UI operations fall into this category.

You can enable Async-Async for your own asynchronous operations by adding the

[remote_async] attribute to your methods.

runtimeclass Awesome

{

 [remote_async]

 Windows.Foundation.IAsyncAction BeAwesomeAsync();

};

Although Async-Async is intended to be transparent to the client, there are some things to be

aware of. We’ll look at those next time.

Raymond Chen

Follow

https://docs.microsoft.com/en-us/uwp/api/windows.foundation.metadata.remoteasyncattribute
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

