
1/3

April 25, 2019

How can I launch an unelevated process from my
elevated process, redux

devblogs.microsoft.com/oldnewthing/20190425-00

Raymond Chen

Some time ago, I showed how you can launch an unelevated process from an elevated process

by asking Explorer to launch the program on your behalf.

There’s another way which is a bit more direct, but it assumes that the thing you want to do

can be done with a direct CreateProcess call. In other words, if you need the system to

look up the user’s file associations or default browser, then this technique is not for you.

The idea is to take advantage of PROCESS_ CREATE_ PROCESS access and the

accompanying PROC_THREAD_ATTRIBUTE_PARENT_PROCESS process thread attribute:

PROC_THREAD_ATTRIBUTE_PARENT_PROCESS

The lpValue parameter is a pointer to a handle to a process to use instead of the calling process
as the parent for the process being created. The process to use must have the
PROCESS_CREATE_PROCESS access right.

Attributes inherited from the specified process include handles, the device map, processor
affinity, priority, quotas, the process token, and job object. (Note that some attributes such as the
debug port will come from the creating process, not the process specified by this handle.)

Basically, this lets you tell the CreateProcess function, “Hey, like, um, pretend that other

guy over there is creating the process.”

Here’s a Little Program to demonstrate. Remember that Little Programs do little to no error

checking so that they can demonstrate the underlying technique without distractions.

https://devblogs.microsoft.com/oldnewthing/20190425-00/?p=102443
https://blogs.msdn.microsoft.com/oldnewthing/20131118-00/?p=2643
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-updateprocthreadattribute

2/3

int main(int, char**)

{

 HWND hwnd = GetShellWindow();

 DWORD pid;

 GetWindowThreadProcessId(hwnd, &pid);

 HANDLE process =

 OpenProcess(PROCESS_CREATE_PROCESS, FALSE, pid);

 SIZE_T size;

 InitializeProcThreadAttributeList(nullptr, 1, 0, &size);

 auto p = (PPROC_THREAD_ATTRIBUTE_LIST)new char[size];

 InitializeProcThreadAttributeList(p, 1, 0, &size);

 UpdateProcThreadAttribute(p, 0,

 PROC_THREAD_ATTRIBUTE_PARENT_PROCESS,

 &process, sizeof(process),

 nullptr, nullptr);

 wchar_t cmd[] = L"C:\\Windows\\System32\\cmd.exe";

 STARTUPINFOEX siex = {};

 siex.lpAttributeList = p;

 siex.StartupInfo.cb = sizeof(siex);

 PROCESS_INFORMATION pi;

 CreateProcessW(cmd, cmd, nullptr, nullptr, FALSE,

 CREATE_NEW_CONSOLE | EXTENDED_STARTUPINFO_PRESENT,

 nullptr, nullptr, &siex.StartupInfo, &pi);

 CloseHandle(pi.hProcess);

 CloseHandle(pi.hThread);

 delete[] (char*)p;

 CloseHandle(process);

 return 0;

}

We start by getting the shell window and using that to identify the process that is responsible

for the shell.

We then use that process ID to open the process with the magic

PROCESS_ CREATE_ PROCESS access.

We then ask the system how much memory is required to create a

PROC_ THREAD_ ATTRIBUTE_ LIST that holds one attribute, and allocate it.

We initialize the newly-allocated attribute list and update it with our process handle, saying

that we want this to be the parent for the process we’re about to create.

3/3

We set up a STARTUPINFOEX structure like usual, but we take the extra step of setting the

lpAttributeList to point to the attribute list.

Finally, we call CreateProcess , but also set the EXTENDED_ STARTUPINFO_ PRESENT

flag to tell it, “Hey, I gave you a STARTUPINFOEX , and if you look inside, you might find a

surprise!”

A little bit of cleaning up, and we’re done.

This program runs a copy of cmd.exe using the shell process (usually explorer.exe) as

its parent, which means that if the shell process is unelevated, then so too will the cmd.exe

process. Of course, if the user is an administrator and has disabled UAC, then Explorer will

still be elevated, and so too will be the cmd.exe . But in that case, the user wants everything

to run elevated, so you’re just following the user’s preferences.

Raymond Chen

Follow

https://docs.microsoft.com/en-us/windows/security/identity-protection/user-account-control/user-account-control-overview
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

