
1/3

March 29, 2019

C++/WinRT envy: Bringing thread switching tasks to C#
(WPF and WinForms edition)

devblogs.microsoft.com/oldnewthing/20190329-00

Raymond Chen

Last time, we brought ThreadSwitcher. ResumeForegroundAsync and Thread‐

Switcher. ResumeBackgroundAsync to C# for UWP. Today, we’ll do the same for WPF

and Windows Forms.

It’ll be easier the second and third times through because we already learned how to

structure the implementation. It’s just the minor details that need to be tweaked.

https://devblogs.microsoft.com/oldnewthing/20190329-00/?p=102373

2/3

using System;

using System.Runtime.CompilerServices;

using System.Threading; // For ThreadPool

using System.Windows.Forms; // For Windows Forms

using System.Windows.Threading; // For WPF

// For WPF

struct DispatcherThreadSwitcher : INotifyCompletion

{

 internal DispatcherThreadSwitcher(Dispatcher dispatcher) =>

 this.dispatcher = dispatcher;

 public DispatcherThreadSwitcher GetAwaiter() => this;

 public bool IsCompleted => dispatcher.CheckAccess();

 public void GetResult() { }

 public void OnCompleted(Action continuation) =>

 dispatcher.BeginInvoke(continuation);

 Dispatcher dispatcher;

}

// For Windows Forms

struct ControlThreadSwitcher : INotifyCompletion

{

 internal ControlThreadSwitcher(Control control) =>

 this.control = control;

 public ControlThreadSwitcher GetAwaiter() => this;

 public bool IsCompleted => !control.InvokeRequired;

 public void GetResult() { }

 public void OnCompleted(Action continuation) =>

 control.BeginInvoke(continuation);

 Control control;

}

// For both WPF and Windows Forms

struct ThreadPoolThreadSwitcher : INotifyCompletion

{

 public ThreadPoolThreadSwitcher GetAwaiter() => this;

 public bool IsCompleted =>

 SynchronizationContext.Current == null;

 public void GetResult() { }

 public void OnCompleted(Action continuation) =>

 ThreadPool.QueueUserWorkItem(_ => continuation());

}

class ThreadSwitcher

{

 // For WPF

 static public DispatcherThreadSwitcher ResumeForegroundAsync(

 Dispatcher dispatcher) =>

 new DispatcherThreadSwitcher(dispatcher);

 // For Windows Forms

 static public ControlThreadSwitcher ResumeForegroundAsync(

3/3

 Control control) =>

 new ControlThreadSwitcher(control);

 // For both WPF and Windows Forms

 static public ThreadPoolThreadSwitcher ResumeBackgroundAsync() =>

 new ThreadPoolThreadSwitcher();

}

The principles for these helper classes are the same as for their UWP counterparts. They are

merely adapting to a different control pattern.

WPF uses the System.Threading.Dispatcher class to control access to the UI thread. The

way to check if you are on the dispatcher’s thread is to call CheckAccess() and see if it

grants you access. If so, then you are already on the dispatcher thread. Otherwise, you are on

the wrong thread, and the way to get to the dispatcher thread is to use the BeginInvoke

method.

In Windows Forms, controls incorporate their own dispatcher. To determine if you’re on the

control’s thread, you check the InvokeRequired property. If it tells you that you need to

invoke, then you call BeginInvoke to get to the correct thread.

Both WPF and Windows Forms use the CLR thread pool. As before, we check the

SynchronizationContext to determine whether we are on a background thread already. If

not, then we use QueueUserWorkItem to get onto the thread pool.

So there we have it, C++/WinRT-style thread switching for three major C# user interface

frameworks. If you feel inspired, you can do the same for Silverlight, Xamarin, or any other

C# UI framework I may have forgotten.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

