Turning anything into a fire-and-forget coroutine

=. devblogs.microsoft.com/oldnewthing/20190322-00

March 22, 2019

)
Raymond Chen

Last time, we wrote a helper function for converting an awaitable into a

winrt:: fire_ and_ forget , as well as another helper function that takes a lambda
that returns an awaitable, and which invokes the lambmda as a

winrt:: fire_ and_ forget.

After I wrote the two functions, I wondered if I could unify them. Mostly because I wanted to
use the same name no_await for both functions.

This took me down the horrible rabbit hole known as C++ template metaprogramming. I
wanted two versions of the function, one that is used if the parameter is awaitable, and
another that is used if the parameter is a functor. This led me to try using things like

std:: enable_ if to detect which case I'm in, and that led to lots of frustration,
especially because there’s no easy way to detect if a type is awaitable. My closest approach
was

template<typename T, typename Promise = std::void_t<>>
struct is_awaitable : std::false_type {};

template<typename T>
struct is_awaitable<T, std::void_t<typename
std::experimental::coroutine_traits<T>::promise_type>> : std::true_type {};

template<typename T>
inline constexpr bool is_awaitable_v = is_awaitable<T>::value;

which infers that a type is awaitable by sniffing whether it has an associated
promise type . This isn’t foolproof, because some types like
winrt:: fire_ and_ forget havea promise_ type that cannot be awaited.

My first realization was that I could flip the test. Instead of checking whether the argument is
awaitable, I check whether it is invokable.

My second realization was that I didn’t have to do fancy template metaprogramming at all. I
could take advantage of the new if constexpr feature.

1/3

https://devblogs.microsoft.com/oldnewthing/20190322-00/?p=102354
https://devblogs.microsoft.com/oldnewthing/20190321-00/?p=102350
https://hackernoon.com/a-tour-of-c-17-if-constexpr-3ea62f62ff65

template<typename T>
fire_and_forget no_await(T t)

{
if constexpr (std::is_invocable_v<T>)
{
co_await t();
}
else
{
co_await t;
}
}

Now you can use no_ await with awaitables or functors that return awaitables.

void Stuff()

{
// Start this operation but don't wait for it to finish
no_await (DoSomethingAsync());

// Start this sequence of things and don't wait for

// them to finish.

no_await([=]() -> IAsyncAction

{
co_await SteplAsync();
// Step 2 doesn't start until Step 1 completes.
co_await Step2Async();

1)

}

On the other hand, for the case of the lambda passed to no_ await , you could just declare
your lambda as returninga winrt:: fire_ and_ forget , and then you wouldn't need
no_ await .

void Stuff()

{
// Start this operation but don't wait for it to finish
no_await (DoSomethingAsync());

// Start this sequence of things and don't wait for
// them to finish.
invoke_async_lambda([=]() -> winrt::fire_and_forget
{
co_await StepilAsync();
// Step 2 doesn't start until Step 1 completes.
co_await Step2Async();

)

2/3

But I like the fact that the first example uniformly uses the name no_ await to describe
the concept of "I'm not going to wait for this thing to finish." And also I'm perhaps unduly
attached to the cute name.

Raymond Chen

Follow

3/3

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

