
1/3

March 22, 2019

Turning anything into a fire-and-forget coroutine
devblogs.microsoft.com/oldnewthing/20190322-00

Raymond Chen

Last time, we wrote a helper function for converting an awaitable into a

winrt:: fire_ and_ forget , as well as another helper function that takes a lambda

that returns an awaitable, and which invokes the lambmda as a

winrt:: fire_ and_ forget .

After I wrote the two functions, I wondered if I could unify them. Mostly because I wanted to

use the same name no_await for both functions.

This took me down the horrible rabbit hole known as C++ template metaprogramming. I

wanted two versions of the function, one that is used if the parameter is awaitable, and

another that is used if the parameter is a functor. This led me to try using things like

std:: enable_ if to detect which case I’m in, and that led to lots of frustration,

especially because there’s no easy way to detect if a type is awaitable. My closest approach

was

template<typename T, typename Promise = std::void_t<>>

struct is_awaitable : std::false_type {};

template<typename T>

struct is_awaitable<T, std::void_t<typename
std::experimental::coroutine_traits<T>::promise_type>> : std::true_type {};

template<typename T>

inline constexpr bool is_awaitable_v = is_awaitable<T>::value;

which infers that a type is awaitable by sniffing whether it has an associated

promise_ type . This isn’t foolproof, because some types like

winrt:: fire_ and_ forget have a promise_ type that cannot be awaited.

My first realization was that I could flip the test. Instead of checking whether the argument is

awaitable, I check whether it is invokable.

My second realization was that I didn’t have to do fancy template metaprogramming at all. I

could take advantage of the new if constexpr feature.

https://devblogs.microsoft.com/oldnewthing/20190322-00/?p=102354
https://devblogs.microsoft.com/oldnewthing/20190321-00/?p=102350
https://hackernoon.com/a-tour-of-c-17-if-constexpr-3ea62f62ff65

2/3

template<typename T>

fire_and_forget no_await(T t)

{

 if constexpr (std::is_invocable_v<T>)

 {

 co_await t();

 }

 else

 {

 co_await t;

 }

}

Now you can use no_ await with awaitables or functors that return awaitables.

void Stuff()

{

 // Start this operation but don't wait for it to finish

 no_await(DoSomethingAsync());

 // Start this sequence of things and don't wait for

 // them to finish.

 no_await([=]() -> IAsyncAction

 {

 co_await Step1Async();

 // Step 2 doesn't start until Step 1 completes.

 co_await Step2Async();

 });

}

On the other hand, for the case of the lambda passed to no_ await , you could just declare

your lambda as returning a winrt:: fire_ and_ forget , and then you wouldn't need

no_ await .

void Stuff()

{

 // Start this operation but don't wait for it to finish

 no_await(DoSomethingAsync());

 // Start this sequence of things and don't wait for

 // them to finish.

 invoke_async_lambda([=]() -> winrt::fire_and_forget

 {

 co_await Step1Async();

 // Step 2 doesn't start until Step 1 completes.

 co_await Step2Async();

 });

}

3/3

But I like the fact that the first example uniformly uses the name no_ await to describe

the concept of "I'm not going to wait for this thing to finish." And also I'm perhaps unduly

attached to the cute name.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

