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Last time, we wrote a helper function for converting an awaitable into a

winrt:: fire_ and_ forget , as well as another helper function that takes a lambda

that returns an awaitable, and which invokes the lambmda as a

winrt:: fire_ and_ forget .

After I wrote the two functions, I wondered if I could unify them. Mostly because I wanted to

use the same name no_await  for both functions.

This took me down the horrible rabbit hole known as C++ template metaprogramming. I

wanted two versions of the function, one that is used if the parameter is awaitable, and

another that is used if the parameter is a functor. This led me to try using things like

std:: enable_ if  to detect which case I’m in, and that led to lots of frustration,

especially because there’s no easy way to detect if a type is awaitable. My closest approach

was

template<typename T, typename Promise = std::void_t<>>

struct is_awaitable : std::false_type {};


template<typename T>

struct is_awaitable<T, std::void_t<typename 
std::experimental::coroutine_traits<T>::promise_type>> : std::true_type {};


template<typename T>

inline constexpr bool is_awaitable_v = is_awaitable<T>::value;


which infers that a type is awaitable by sniffing whether it has an associated

promise_ type . This isn’t foolproof, because some types like

winrt:: fire_ and_ forget  have a promise_ type  that cannot be awaited.

My first realization was that I could flip the test. Instead of checking whether the argument is

awaitable, I check whether it is invokable.

My second realization was that I didn’t have to do fancy template metaprogramming at all. I

could take advantage of the new if constexpr feature.

https://devblogs.microsoft.com/oldnewthing/20190322-00/?p=102354
https://devblogs.microsoft.com/oldnewthing/20190321-00/?p=102350
https://hackernoon.com/a-tour-of-c-17-if-constexpr-3ea62f62ff65


2/3

template<typename T>

fire_and_forget no_await(T t)

{

   if constexpr (std::is_invocable_v<T>)

   {

       co_await t();

   }

   else

   {

       co_await t;

   }

}


Now you can use no_ await  with awaitables or functors that return awaitables.

void Stuff()

{

 // Start this operation but don't wait for it to finish

 no_await(DoSomethingAsync());


 // Start this sequence of things and don't wait for

 // them to finish.

 no_await([=]() -> IAsyncAction

 {

   co_await Step1Async();

   // Step 2 doesn't start until Step 1 completes.

   co_await Step2Async();

 });

}


On the other hand, for the case of the lambda passed to no_ await , you could just declare

your lambda as returning a winrt:: fire_ and_ forget , and then you wouldn't need

no_ await .

void Stuff()

{

 // Start this operation but don't wait for it to finish

 no_await(DoSomethingAsync());


 // Start this sequence of things and don't wait for

 // them to finish.

 invoke_async_lambda([=]() -> winrt::fire_and_forget

 {

   co_await Step1Async();

   // Step 2 doesn't start until Step 1 completes.

   co_await Step2Async();

 });

}
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But I like the fact that the first example uniformly uses the name no_ await  to describe

the concept of "I'm not going to wait for this thing to finish." And also I'm perhaps unduly

attached to the cute name.
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