
1/3

March 13, 2019

Why is there a limit of 15 shell icon overlays?
devblogs.microsoft.com/oldnewthing/20190313-00

Raymond Chen

There is a limit of fifteen shell icon overlays. Why fifteen?

The value 15 came from the corresponding limit for image lists. The ImageList_Set‐

OverlayImage function supports up to 15 image list overlays per image list. (Hey, it used to

be worse. The limit used to be only 3!)

Okay, but why only 15? Why not more?

The overlay image is one of the pieces of information used when drawing an image from an

image list. The options are encoded in the fStyle parameter, and when the bits were

divided up for various purposes, four bits were available to be used to specify the overlay

image. (You get 15 overlay images instead of 16 because you lose one of the values in order to

specify “no overlay.”)

Okay, but the values in the fStyle parameter use only the bottom 16 bits. What about the

upper 16 bits? There’s plenty of room there.

The 16-bit limit was carried over from the 16-bit version of the common controls (which still

needed to be supported in Windows 95). Of course, nowadays, nobody cares about the 16-bit

version of the common controls, so why not start using the upper bits?

There’s an unsatisfying explanation: The code internally that manages the fStyle still uses

a WORD in some places, so all the code that manages the fStyle would have to be revised.

This occurs in multiple modules across Windows, so a synchronized change would have to be

made across multiple components. This is a breaking change at the binary level because the

interfaces are no longer compatible. Breaking changes are procedurally difficult to

coordinate: The affected code may not be visible to the shell team because they are sitting in

a far-away leaf branch that has not yet RI’d to the trunk. It might be that expanding fStyle

from a WORD to a DWORD has far-reaching consequences for some component.

Like I said, this is unsatisfying. Basically it boils down to “It would be a lot of work and we are

lazy.”

https://devblogs.microsoft.com/oldnewthing/20190313-00/?p=101094
http://msdn.microsoft.com/library/bb775227
http://blogs.msdn.com/b/oldnewthing/archive/2013/08/20/10442834.aspx

2/3

Another unsatisfying explanation is that the image list serialization format would be affected.

This is one of the far-reaching consequences I hinted at: Changing a file format means that

you also need to come up with a compatibility story. What happens if an old program

encounters a file in the new format?

Okay, so maybe we leave image lists the way they are, but change Explorer so that it

internally allows more than 15 overlays by, say, “paging” overlays in and out of the system

image list. But this would require taking a lock during image list drawing operations, which

currently can be performed concurrently. But the system image list is exposed to applications

so that they can draw out of them directly, and applications won’t know about the extra

serialization that applies only to the system image list. So that’s a non-starter, too.

A bigger problem is that the overlay indices are exposed to applications via the SHGetFile‐

Info function. If you ask for SHGFI_OVERLAYINDEX , then the function returns the overlay

index to the application, and if the overlay index is greater than 15, older applications won’t

know how to draw with it.

Now, these problems aren’t completely insurmountable. For example, we could invent a new

flag to SHGetFileInfo that says, “I understand overlays greater than 15,” and if the caller

doesn’t set the flag, then the function just pretends that those overlays don’t exist. The calling

application doesn’t draw the icon correctly (it’s missing the overlay), but at least it doesn’t

crash.

But the main reason this doesn’t get done is simply that overlays are not recommended as the

way to convey metadata about a file to the user. An icon can have only one overlay, which

means that if multiple overlays apply, then the system will arbitrarily choose one to show,

and the others will lose.

Windows 10 takes a step away from icon overlays by moving the OneDrive file

synchronization status indicator from an icon overlay to a separate Status column.

https://blogs.msdn.microsoft.com/oldnewthing/20091209-00/?p=15723

3/3

Since it’s a separate column, there’s room to put more than one status icon there.

Raymond Chen

Follow

https://gxcuf89792.i.lithium.com/t5/image/serverpage/image-id/15087i66C1AE682A061487
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

