
1/8

March 6, 2019

How do I destruct an object that keeps a reference to
itself, because that reference prevents the object from
being destructed

devblogs.microsoft.com/oldnewthing/20190306-00

Raymond Chen

Consider the case of an ordered work queue. Components can queue work to the worker

thread, with the expectation that the work will run sequentially.

https://devblogs.microsoft.com/oldnewthing/20190306-00/?p=101084


2/8

class OrderedWorkQueue

{

public:

OrderedWorkQueue()

{
 // Start up the worker thread.

 m_thread = std::thread([this]() {

  while (!m_exiting) {

   m_signal.Wait();

   m_queue.ProcessWork();

  }

 });

}

template<typename... Args>

void QueueWork(Args&&... args)

{
 m_queue.Append(std::make_unique<OrderedWorkItem>

                                 (std::forward<Args>(args)...));

 m_signal.Signal();

}

~OrderedWorkQueue()

{
 m_exiting = true;

 m_signal.Signal();

}

private:

// App-provided stuff. Assume they work.

class OrderedWorkItem

{
 template<typename... Args>

 OrderedWorkItem(Args&&... args);


 void Execute();

};


SomeSortOfQueue m_queue;

SomeSortOfSignal m_signal;


// Stuff related to worker thread management.

std::atomic<bool> m_exiting;

std::thread m_thread;

};

The OrderedWorkQueue  object creates a worker thread whose job is to execute work items

in the order they were queued. We have a problem here: The main thread signals the worker

thread to exit, and then returns immediately, stranding the worker thread with a this

pointer that points to a destructed object.

https://blogs.msdn.microsoft.com/oldnewthing/20161125-00/?p=94795


3/8

One solution is to wait for the worker thread to finish its work.

~OrderedWorkQueue()

{
 m_exiting = true;

 m_signal.Signal();

 m_thread.join();

}

This ensures that the this  pointer remains valid for the duration of the worker thread.

However, this comes with its own problems.

First, It changes the behavior of the class. destruction used to be a quick affair, but now

destruction waits for the work items to drain, which can take an indefinite length of time. The

intent of the OrderedWorkQueue  may have been to employ a fire-and-forget design: Create

an ordered work queue, queue a bunch of work to it, and then destroy the work queue. The

work that got queued up will still execute eventually, in order, but the main thread was

expecting to be able to get other work done in the meantime.

Furthermore, one of the work items may need to communicate with the thread that is doing

the destructing, but it can’t do that because the destructing thread is waiting for the worker

thread to exit. So you have a potential deadlock.

Okay, so we solve this problem by having the worker thread maintain a strong reference to

the object, to ensure that the object’s member variables remain valid for the duration of the

thread.

class OrderedWorkQueue

{

static std::shared_ptr<OrderedWorkQueue> Create()

{
 auto self = std::make_shared<OrderedWorkQueue>();

 self->m_thread = std::thread([lifetime = self, this]() {

  while (!m_exiting) {

   m_signal.Wait();

   m_queue.ProcessWork();

  }

 });

 return self;

}

The captured lifetime  retains the shared reference so that the background thread can

continue using the object’s member variables.

But wait, we have a new problem: The destructor never runs because the worker thread

retains a strong reference to it.



4/8

Okay, so we try to fix the problem by passing a weak reference, and converting it to strong

only as necessary.

static std::shared_ptr<OrderedWorkQueue> Create()

{
 auto self = std::make_shared<OrderedWorkQueue>();

 self->m_thread = std::thread(

  [weak = std::weak_ptr<OrderedWorkQueue>(self), this]() {

  auto strong = weak.lock();

  if (!strong) return;

  while (!m_exiting) {

   m_signal.Wait();

   auto workList = m_queue.DetachWork();

   // drop the strong reference while we process the work

   strong.reset();

   ProcessWorkList(workList);

   // reacquire the strong reference after work is done

   strong = weak.lock();

   if (!strong) return;

  }

 });

 return self;

}

This doesn’t really go anywhere because the m_signal.Wait()  call runs while there is still

a strong reference, so we are back where we started.

One way out is to create a façade. The public-facing OrderedWorkQueue  is what other

components use to queue work to a background thread. The public-facing part retains a

shared reference to the private part, and it’s the private part that does the real work.



5/8

class OrderedWorkQueue

{

public:

OrderedWorkQueue() = default;


template<typename... Args>

void QueueWork(Args&&... args)

{
 m_worker->QueueWork(std::forward<Args>(args)...);

}

~OrderedWorkQueue()

{
 m_worker->Exit();

}

private:

// This is our old OrderWorkQueue class

class OrderedWorkQueueWorker

{
public:

 static std::shared_ptr<OrderedWorkQueueWorker> Create()

 {

  auto self = std::make_shared<OrderedWorkQueueWorker>();

  self->m_thread = std::thread([lifetime = self, this]() {

   while (!m_exiting) {

    m_signal.Wait();

    m_queue.ProcessWork();

   }

  });

  return self;

 }


 template<typename... Args>

 void QueueWork(Args&&... args)

 {

  m_queue.Append(std::make_unique<OrderedWorkItem>

                                 (std::forward<Args>(args)...));

  m_signal.Signal();

 }


 void Exit()

 {

  m_exiting = true;

  m_signal.Signal();

 }


private:

 // App-provided stuff. Assume they work.

 class OrderedWorkItem

 {

  template<typename... Args>




6/8

  OrderedWorkItem(Args&&... args);


  void Execute();

 };


 SomeSortOfQueue m_queue;

 SomeSortOfSignal m_signal;


 // Stuff related to worker thread management.

 std::atomic<bool> m_exiting;

 std::thread m_thread;

};


std::shared_ptr<OrderedWorkQueueWorker> m_worker =

                               OrderedWorkQueueWorker::Create();

};

An equivalent version which some people prefer is to put only the data members into the

shared object.



7/8

class OrderedWorkQueue

{

public:

OrderedWorkQueue()

{
 m_thread = std::thread([data = m_data]() {

  while (!data->m_exiting) {

   data->m_signal.Wait();

   data->m_queue.ProcessWork();

  }

 });

}

template<typename... Args>

void QueueWork(Args&&... args)

{
 m_data->m_queue.Append(std::make_unique<OrderedWorkItem>

                                 (std::forward<Args>(args)...));

 m_data->m_signal.Signal();

}

~OrderedWorkQueue()

{
 m_data->m_exiting = true;

 m_data->m_signal.Signal();

}

private:

struct OrderWorkQueueData

{
 SomeSortOfQueue m_queue;

 SomeSortOfSignal m_signal;

 std::atomic<bool> m_exiting;

};


class OrderedWorkItem

{
 template<typename... Args>

 OrderedWorkItem(Args&&... args);


 void Execute();

};


std::shared_ptr<OrderedWorkQueueData> m_data =

  std::make_shared<OrderedWorkQueueData>();


std::thread m_thread;

};

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing


8/8








