
1/4

March 1, 2019

How to compare two packed bitfields without having to
unpack each field

devblogs.microsoft.com/oldnewthing/20190301-00

Raymond Chen

Suppose you are packing multiple bitfields into a single integer. Let’s say you have a 16-bit

integer that you have packed three bitfields into:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

r g b

Suppose you have two of these packed bitfields, x and y,

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

xr xg xb

yr yg yb

and you want to know whether every field in x is greater than or equal the corresponding

field in y. I.e., you want to determine whether xr ≥ yr, xg ≥ yg, and xb ≥ yb.

One way would be to unpack the bitfields.

https://devblogs.microsoft.com/oldnewthing/20190301-00/?p=101076

2/4

bool IsEveryComponentGreaterThanOrEqual(uint16_t x, uint16_t y)

{

auto xr = x >> 11;

auto yr = y >> 11;

if (xr < yr) return false;

auto xg = (x >> 5) & 0x3F;

auto yg = (y >> 5) & 0x3F;

if (xg < yg) return false;

auto xb = x & 0x1F;

auto yb = y & 0x1F;

if (xb < yb) return false;

return true;

}

There’s an obvious optimization here, which is to avoid the extra shifting.

bool IsEveryComponentGreaterThanOrEqual(uint16_t x, uint16_t y)

{

auto xr = x & 0xF100;

auto yr = y & 0xF100;

if (xr < yr) return false;

auto xg = x & 0x07E0;

auto yg = y & 0x07E0;

if (xg < yg) return false;

auto xb = x & 0x001F;

auto yb = y & 0x001F;

if (xb < yb) return false;

return true;

}

But suppose this comparison is part of your program’s inner loop, so you’re hoping for

something better.

Well, if you had planned ahead and inserted a zero padding bit at the front of each field:

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 r 0 g 0 b

then you could subtract the two values and see if any padding bit became set, which indicates

that an underflow occurred somewhere to the right.

3/4

bool IsEveryComponentGreaterThanOrEqual(uint32_t x, uint32_t y)

{

auto m = (x - y) & ((1 << 18) | (1 << 12) | (1 << 5));

return m == 0;

}

However, this forces you to reserve padding bits, and it seems silly to have padding bits all

over your data just for this purpose. I mean, those are bits that could’ve been doing

something useful!

In our example, those three extra bits forced us to use a larger integral type, which means our

memory usage doubled.

Can you do it without inserting padding bits?

Indeed you can, thanks to a trick from emulator master Darek Mihocka: The carry-out vector.

You can read the paper or take the easier route and read the presentation.

In this case, we want the subtraction carry-out vector (which is really the borrow vector). The

formula is right here in the Bochs emulator source code.

#define SUB_COUT_VEC(op1, op2, result) \

 (((~(op1)) & (op2)) | ((~((op1) ^ (op2))) & (result)))

In the subtraction carry-out vector, a bit is set if the subtraction resulted in a borrow at that

position. We then check whether there was a borrow at the corresponding high bits 4, 10, or

15.

Here we go:

bool IsEveryComponentGreaterThanOrEqual(uint16_t x, uint16_t y)

{

auto c = ((~x & y) | (~(x ^ y) & (x - y));

c &= 0x8410;

return c == 0;

}

Slide 13 of the presentation linked above shows how this technique can be used to implement

saturating bitfield arithmetic in general-purpose registers. Who needs SIMD registers!

The carry-out vector is truly magical.

Bonus reading: How Bochs Works Under the Hood. The “Lazy flags handling” section has

a useful diagram.

Raymond Chen

Follow

http://emulators.com/
http://www.emulators.com/docs/LazyOverflowDetect_Final.pdf
http://www.emulators.com/docs/Mihocka-Troeger-CGO-WISH-2010_final.pdf
https://sourceforge.net/p/bochs/code/HEAD/tree/branches/REL_2_6/bochs/cpu/lazy_flags.h#l55
http://bochs.sourceforge.net/How%20the%20Bochs%20works%20under%20the%20hood%202nd%20edition.pdf
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

