
1/4

February 5, 2019

The Intel 80386, part 12: The stuff you don’t need to know
devblogs.microsoft.com/oldnewthing/20190204-00

Raymond Chen

There are quite a few extra instructions that are technically legal in user-mode code, but

which you won’t see in compiler-generated code because they are simply too weird.

 PUSHAD ; push all general-purpose registers

 POPAD ; pop (almost) all general-purpose registers

 PUSHFD ; push flags register

 POPFD ; pop flags register

 LAHF ; AH = flags

 SAHF ; flags = AH

The PUSHAD (push all doubleword) and POPAD (pop all doubleword) instructions push and

pop the eight general-purpose registers onto the stack. This includes the stack pointer

register esp! The PUSHAD instruction pushes the esp register onto the stack, and the POPAD

instruction pops the value, but doesn’t store it into the esp register. The value that would

normally go into the esp register is simply discarded.

The PUSHFD (push flags doubleword) and POPFD (pop flags doubleword) instructions push

and pop the flags register to/from the stack. When popped, some flag bits are discarded

rather than being stored into the flags register.

The LAHF (load ah from flags) and the SAHF (store ah to flags) instructions transfer the

sf,zf, af, pf, and cf flags to and from the ah register.

The next group of instructions are for binary-coded decimal. Packed binary coded decimal

(packed BCD) uses a single byte to represent values from 0 to 99, putting the tens digit in the

upper nibble and the units digit in the lower nibble. Each subsequent byte represents another

power of 100. For example, the decimal number 764 is represented by the byte 0x64

followed by the byte 0x07 . In the mnenonic, this is known as “decimal” BCD.

Unpacked binary coded decimal (unpacked BCD) uses a single byte to represent a single digit

from 0 to 9. The value simply represents itself. Each subsequent byte represents another

power of ten. For example, the decimal number 764 is represented by the bytes 0x04 ,

0x06 and 0x07 . In the mnenonic, this is known as “ASCII” BCD.

https://devblogs.microsoft.com/oldnewthing/20190204-00/?p=101030
https://blogs.msdn.microsoft.com/oldnewthing/20160411-00/?p=93281

2/4

 DAA ; decimal (packed BCD) adjust after addition

 DAS ; decimal (packed BCD) adjust after subtraction

 AAA ; ASCII (unpacked BCD) adjust after addition

 AAS ; ASCII (unpacked BCD) adjust after subtraction

 AAM ; ASCII (unpacked BCD) adjust after multiplication

 AAD ; ASCII (unpacked BCD) adjust after division

All of the BCD adjustment instructions are expected to be executed immediately after the

corresponding arithmetic operation, and the destination of the arithmetic operation is

expected to be the al register. I mean, there’s nothing preventing you from executing the

instructions even if you didn’t meet the prerequisites, but the results are not likely to be very

useful.

The DAA instruction (decimal adjust after addition) assumes that you added two bytes in

packed BCD format, and it converts the result back into packed BCD format, setting the carry

flag according to whether the result was 100 or greater. For example, if you added 0x23 and

0x59 , the initial result is 0x7C (which is the sum as normal integers), and the the DAA

instruction adjusts the value to 0x82 , to represent the packed BCD sum.

The DAS (decimal adjust after subtraction) instruction operates similarly.

The AAA (ASCII adjust after addition) assumes that the operation you performed was on an

unpacked BCD value. It adjusts the value in the al, and if a carry occured, it increments the

ah register. The AAS (ASCII adjust after subtraction) operates similarly.

The AAM (ASCII adjust after multiplication) instruction assumes that the most recent

operation was a multiply of two 8-bit values in unpacked BCD format, producing a result in

ax.

The AAD (ASCII adjust before division) instruction is unusual in that you execute it before

the corresponding instruction. It takes an unpacked BCD two-digit value in ax and prepares

it so that the upcoming 16-by-8 division will produce correct decimal values.

The next instructions are for bit-scanning.

 BSF r, r/m ; d = index of first set bit in s

 BSR r, r/m	 ; d = index of last set bit in s

The BSF (bit scan forward) instruction searches for the least significant set bit in the source

value and sets the destination register to the index of that bit. The BSR (bit scan reverse)

instruction does the same, but it looks for the most significant set bit. If the source is zero,

then the destination is undefined and the zf flag is set.

The next group is the rotation instructions.

3/4

 ROL r/m, CL/i ; d = d rotate left by s, set flags

 ROR r/m, CL/i ; d = d rotate left by s, set flags

 RCL r/m, CL/i ; d = d|CF rotate left by s, set flags

 RCR r/m, CL/i ; d = d|CF rotate left by s, set flags

The ROL instruction rotates the bits of the destination left (towards higher significance) by

the amount specified by the source, which is taken mod 32. The ROR instruction rotates

right. The carry flag contains the last bit rotated out, and if the shift amount is the immediate

1, then the overflow flag is set if the sign bit changed. (If the shift amount is not the

immediate 1, then the overflow flag is undefined.) The zero, sign, and parity flags are set

based on the result.

The RCL and RCR instructions are similar, except that rotation is through an n+1 bit value,

where the carry flag is the extra bit.

And then there are the counted loop instructions.

 LOOP dest ; decrement ecx, jump if result is nonzero

 LOOPE dest ; decrement ecx, jump if result is nonzero

 ; and ZF is set (alternate opcode: LOOPZ)

 LOOPNE dest ; decrement ecx, jump if result is nonzero

 ; and ZF is clear (alternate opcode: LOOPNZ)

 JECXZ dest ; jump if ecx is zero

The counted loop instructions require the loop counter to be stored in the ecx register. The

usual pattern is

 MOV ecx, number_of_iterations

 JECXZ done ; no iterations at all

again:

 ... do something ...

 LOOP again ; do it number_of_iterations times

done:

You can also make the loop conditional upon the zf flag. The LOOPE (loop while equal)

instruction loops provided the result of the most recent flags-setting operation was zero. The

LOOPNE (loop while not equal) requires that the most recent flags-setting result be nonzero.

 MOV ecx, number_of_iterations

 JECXZ done ; no iterations at all

again:

 ... do something ...

 CMP eax, 90

 LOOPZ again ; do it number_of_iterations times

 ; provided eax is 90

done:

 ; loop ends when we have executed all iterations or eax is not 90

And then some random instructions I couldn’t categorize easily.

4/4

 XLAT ; al = byte at ebx+al

 BOUND r, m ; check that d is in range [s]..[s+4]

 INTO ; check if overflow is set

The XLAT instruction treats the value in the al register as an index into in a table of 256

bytes starting at ebx, putting the result back into the al register. My guess, given the opcode

name, is that this was for character set translation where the characters in the source and

destination character sets are both single-byte. (Think ASCII and EBCDIC.)

The BOUND instruction performs a bounds check of the destination register. The source

refers to two 32-bit values in memory, the first being the smallest legal value and the second

being the largest legal value. If the destination value is not in range, then interrupt 5 is raised.

The values are treated as unsigned because the intended purpose of this instruction is to

perform an array bounds check.

The INTO instruction checks whether the overflow bit is set. If so, then it raises interrupt 4.

Finally, there are instructions so weird I won’t even go into them. They are technically legal

instructions but are not useful in practice because 32-bit Windows uses a flat address space.

 ARPL r/m16, r16 ; adjust requested privilege level

 LAR r32, r/m32 ; load access rights

 LSL r32, r/m32 ; load selector limit

These instructions operate on selectors, but since there are no interesting selectors in 32-bit

Windows (aside from the TEB, which we discussed earlier), these instructions don’t

accomplish anything interesting.

Next time, we’ll look at the Windows calling conventions.

Raymond Chen

Follow

http://devblogs.microsoft.com/oldnewthing/20190206-00/?p=101032
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

