The Intel 80386, part 10: Atomic operations and memory
alignment

=. devblogs.microsoft.com/oldnewthing/20190131-00

February 1, 2019

-
Raymond Chen

Memory access on the 80386 to misaligned locations are supported, although they will
operate more slowly than their aligned counterparts. If a memory access straddles a page
boundary, an access violation will be raised if either page does not support the desired
operation (not readable or not writable), and the instruction will not appear to have started.
The instruction does not partially-execute before the exception is raised.

If you are unlucky, and your misalignment straddles a page boundary, you can incur multiple
page faults until pages on both sides of the boundary are simultaneously ready to accept the
operation. If you are super-unlucky, this state may never be achieved and your program will

just keep page faulting on that same instruction over and over again until the user terminates
it.

Although 80386 does not support symmetric multiprocessor operations, it does support
coprocessor operations as well as direct memory access (DMA), so you still need to be aware
of atomicity.

Storing values to memory and reading values from memory are atomic operations.! If a
competing processor writes to or reads the same memory, the result will be completely one
value or the other, never a mix of the two.

This atomicity does not extend by default to read-modify-write operations, however.

INC [value] ; may conflict with other processors

It’s possible that another processor could write to the memory between the read and the
write of the INC instruction.

To prevent another processor from accessing the memory during a read-modify-write
memory operation, insert a LOCK prefix in front of the instruction. This causes the read-
modify-write sequence to occur atomically.

LOCK INC [value] ; increment atomically

1/2


https://devblogs.microsoft.com/oldnewthing/20190131-00/?p=100845
https://blogs.msdn.microsoft.com/oldnewthing/20040827-00/?p=38033

Any memory operation can be prefixed with a LOCK , and the processor will prevent any
other processors from accessing the memory for the duration of that instruction. This works
even for unaligned memory accesses!

The LOCK prefix is superfluous for simple reads and writes, since those are already atomic.
It adds value only for read-modify-write instructions.

The LOCK prefix is also superfluous for the XCHG instruction, because the processor
automatically locks the bus during an exchange. This automatic lock is for backward
compatbility purposes, because XCHG was a common way to perform test-and-set
operations on earlier versions of the processor.

Note that many atomic operations are not available in the form we have become accustomed
to: Although you can perform an atomic increment or decrement, or atomic add or subtract,
you don’t receive the arithmetic result. The only atomic result from an arithmetic operation
on memory is the flags. Therefore, the only information you got back from the Interlocked-

Increment or InterlockedDecrement functions was the sign of the result. You could try to
read the memory back to see what the result was, but that would be a separate instruction,

outside the scope of the LOCK , and therefore is not part of the overall atomic operation.

The 80386 has no compare-exchange instruction, so there was no InterlockedCompare-
Exchange available for the 80386. You did get a straight InterlockedExchange , though.

Okay, so that’s atomic operations and memory alignment. Next time, we’ll start looking at
Windows software conventions.

1 The operations are atomic, but not synchronized.

Raymond Chen

Follow

2/2


https://blogs.msdn.microsoft.com/oldnewthing/20040506-00/?p=39463
http://devblogs.microsoft.com/oldnewthing/20190204-00/?p=101028
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

