
1/4

January 23, 2019

The Intel 80386, part 3: Flags and condition codes
devblogs.microsoft.com/oldnewthing/20190122-00

Raymond Chen

The flags register contains a bunch of stuff, but here are the flags easily accessible in the

debugger:

Flag Clear/Set Meaning Notes

OF nv/ov Overflow

DF up/dn Direction Must be up at function boundaries

SF pl/ng Sign

IF ei/di Interrupts Set if interrupts are enabled

ZF nz/zr Zero

AF na/ac Auxiliary carry Not used by C code

PF pe/po Parity Not used by C code

CF nc/cy Carry

We’ll learn about the direction flag when we get to string operations. The important detail for

now is that the direction flag must be clear (up) at function boundaries.

Instructions for manipulating the interrupt flag are privileged, so you won’t see user-mode

code messing with it. I wouldn’t normally have mentioned it, but the Windows disassembler

displays the state of the interrupt flags in the register output, so I included it here just so you

can see what it means (and then promptly forget about it).

The auxiliary carry is used to indicate whether a carry occurred between bits 3 and 4. It is

used by the binary coded decimal instructions.

The parity is used to indicate whether the number of set bits in the least significant 8 bits of

the result is odd or even.

https://devblogs.microsoft.com/oldnewthing/20190122-00/?p=100765

2/4

The Clear/Set column denotes how the Windows disassembler represents flags in the

register output:

eax=00000000 ebx=00000000 ecx=9f490000 edx=00000000 esi=7f19e000 edi=00000000

eip=77a93dad esp=0048f844 ebp=0048f870 iopl=0 nv up ei pl zr na pe nc

cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000246

The efl represents the value of the 32-bit flags register, and selected bits are parsed out and

rendered as mnemonics on the line above.

Various combinations of conditions can be expressed with condition codes. Note that many

conditions have multiple mnemonics. The first one listed is the one the disassembler uses.

Code Meaning Condition Notes

E Equal ZF

Z Zero

NE Not equal !ZF

NZ Not zero

A Above !CF && !ZF Unsigned greater than

NBE Not below or equal

AE Above or equal !CF Unsigned greater than or
equal

NB Not below

NC No carry No unsigned overflow

B Below CF Unsigned less than

NAE Not above or equal

C Carry set Unsigned overflow

BE Below or equal CF || ZF Unsigned less than or equal

NA Not above

G Greater !(SF ^ OF) &&
!ZF

Signed greater than

NLE Not less than or equal

GE Greater than or equal !(SF ^ OF) Signed greater than or equal

NL Not less than

3/4

L Less than (SF ^ OF) Signed less than

NGE Not greater than or
equal

LE Less than or equal (SF ^ OF) || ZF Signed less than or equal

NG Not greater than

S Sign SF Negative

NS No sign !SF Positive or zero

O Overflow OF Signed overflow

NO No overflow !OF No signed overflow

P Parity PF Even number of bits set

PE Parity even

NP No parity !PF Odd number of bits set

PO Parity odd

The overflow and parity conditions are not normally used by C code. Note also that many

flags are not testable via condition codes. (Poor auxiliary carry flag. Nobody loves you.)

There are a few instructions for directly manipulating selected flags:

 STC ; set carry

 CLC ; clear carry

 CMC ; complement (toggle) carry

 STD ; set direction (go down)

 CLD ; clear direction (go up)

Controlling the interrupt flag is a privileged instruction, so you won’t see it in user-mode

code. There are no instructions for directly manipulating the other flags, but you can

manipulate them indirectly by performing an arithmetic operation with a known effect on

flags. For example, you can force ZF to be set by performing a calculation whose result is

known to be zero, such as XOR EAX, EAX .

Okay, that was extremely boring, but it had to be done. Next time, we’ll start doing

arithmetic.

Raymond Chen

Follow

http://devblogs.microsoft.com/oldnewthing/20190124-00/?p=100775
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

