
1/2

December 26, 2013

Why is GetWindowLongPtr returning a garbage value on
64-bit Windows?

devblogs.microsoft.com/oldnewthing/20131226-00

Raymond Chen

A customer was running into problems with their application
on 64-bit Windows 8.
They

claimed that on Windows 8, the
 GetWindowLongPtr
is returning a garbage pointer,
which

causes their program to crash.
The same program works fine on 64-bit Windows 7.
They

asked the Windows team why they broke
 GetWindowLongPtr .

An investigation of the customer’s code quickly turned up the issue:

INT_PTR CALLBACK AwesomeDialogProc(

 HWND hdlg, UINT uMsg, WPARAM wParam, LPARAM lParam)

{

 Awesome *pThis = (Awesome*)GetWindowLongPtr(hdlg, DWLP_USER);

 switch (uMsg) {

 case WM_INITDIALOG:

 pThis = (Awesome*)lParam;

 SetWindowLongPtr(hdlg, DWLP_USER, (LONG)pThis);

 ...

 return TRUE;

 case WM_COMMAND:

 if (pThis != nullptr) {

 // This line crashes with pThis = garbage nonzero value

 return pThis->OnCommand(wParam, lParam);

 }

 return FALSE;

 ...

 }

 return FALSE;

}

See if you can spot the problem.

The error is in the line that calls
 SetWindowLongPtr .
It takes the 64-bit pointer value

pThis
and casts it to a LONG ,
which is a 32-bit integer type.
This truncates the pointer and

throws away the upper 32 bits of data.
Therefore, when read back, the pointer looks like

garbage
because the top 32 bits were set to zero (or to 0xFFFFFFFF ,
depending on the value

of bit 31).

https://devblogs.microsoft.com/oldnewthing/20131226-00/?p=2263
http://blogs.msdn.com/b/oldnewthing/archive/2005/01/31/363790.aspx

2/2

Windows 8 made some improvements to the memory manager,
and a side effect was a

seemingly harmless change
to the way memory is allocated in 64-bit processes.
As a result of

the change, pointer values greater than
4GB
are much more common, which means that the

pointer truncation
will actually destroy data.
(In Windows 7, the default heap tended to hang

out below the 2GB
boundary, so the code merely truncated zeros, which is
mostly harmless.)

What I found particularly interesting about this error is that
the DWL_USER window long

was specifically
renamed to DWLP_USER in 64-bit Windows in order to force
a build break.

Therefore, developers had to go in and convert each separate use of
 [GS]etWindowLong

with
 DWL_USER
to a version that used
 [GS]etWindowLongPtr with
 DWLP_USER ,
being

careful not to truncate the pointer.

This customer missed that last little bit about not truncating the pointer,
and all they did was

a global search/replace:

s/\bGetWindowLong\b/GetWindowLongPtr/g;

s/\bSetWindowLong\b/SetWindowLongPtr/g;

s/\bDWL_USER\b/DWLP_USER/g;

“There,
I fixed it.”

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2009/06/11/9725386.aspx
http://www.amazon.com/dp/0345418778?tag=tholneth=20
http://failblog.cheezburger.com/thereifixedit
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

