
1/2

December 19, 2013

How do I display an RTL string in a notification balloon
on an LTR system?

devblogs.microsoft.com/oldnewthing/20131219-00

Raymond Chen

Suppose you have a program that is written in Arabic or Hebrew
and you want to render

some text.
No problem.
You just call
 ExtTextOut and pass the
 ETO_RTLREADING flag to

say,
“Please render this string in an RTL context.”
Many other text-rendering functions have

a similar flag,
such as
 DT_RTLREADING for
 DrawText .

But what if you don’t control the call to
 ExtTextOut or DrawText
or whatever other

function is being used to render the text.
If you don’t control the call, then you can’t pass

along the
magic “Please render this string in an RTL context” flag.

If you’re lucky, the component that is doing the rendering has
some analogous flag that tells

it to render in RTL context.
If the component is a control,
this flag may be implicit in the

WS_EX_RTLREADING extended style
on the control window itself.
For some components, the

secret signal is
the presence of two RLM characters (U+200F) at the beginning of the string.

If you’re not lucky, then the component that is doing the rendering
gives you no way to

convince or cajole it into rendering text
in an RTL context.
But all hope is not lost:
The

(possibly
non-intuitive)
Unicode Bidi algorithm comes to the rescue!

What you can do is place the RLE control character (U+202B)
at the start of the string.
The

RIGHT-TO-LEFT EMBEDDING control character means
“Treat the text that follows in an

RTL context until further instructions.”
(You cancel the effect of an RLE by a PDF (POP

DIRECTIONAL
FORMATTING, U+202C).)

Let’s demonstrate in our
scratch program.

https://devblogs.microsoft.com/oldnewthing/20131219-00/?p=2323
http://msdn.microsoft.com/en-us/library/windows/desktop/ms645505(v=vs.85).aspx
http://blogs.msdn.com/b/oldnewthing/archive/2012/10/26/10362864.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2003/07/23/54576.aspx

2/2

#define THESTRING L"\x0639\x0644\x0649 \x0633\x0628\x064a\x0644 " \

 L"\x0627\x0644\x0645\x062b\x0627\x0644: " \

 L"Dear \x0623\x0634\x0631\x0641 " \

 L"\x0645\x0627\x0647\x0631"

#define RLE L"\x202b"

void ShowString(HDC hdc, int y, PCWSTR psz, UINT format)

{

RECT rc = { 0, y, 500, y+100 };

DrawTextW(hdc, psz, -1, &rc, format);

}

void

PaintContent(HWND hwnd, PAINTSTRUCT *pps)

{

ShowString(pps->hdc, 0, THESTRING, 0);

ShowString(pps->hdc, 100, THESTRING, DT_RTLREADING);

ShowString(pps->hdc, 200, RLE THESTRING, 0);

}

This sample program takes
a string in Arabic
(with a little bit of English thrown in just to

make the difference
more noticeable)
and renders it three ways:

As an LTR string with no special formatting.

As an RTL string with no special formatting.

As an LTR string with an RTL context imposed via the RLE control character.

Observe that in the first case, the string treats the Arabic
at the beginning and end of the

string as Arabic text embedded
in an English sentence,
so it is formatted as

:على
سبيل
المثالDear
أشرف ماهر

In the second case, the entire string is treated as an Arabic sentence
with an English word

stuck inside it.
Therefore, it comes out as

:على
سبيل
المثالDear
أشرف ماهر

In the third case, we force the string to be treated as an Arabic
sentence by using the RLE

control character.
The result matches the second string.

Note that the formatting is still not ideal because the underlying
canvas is still LTR:
The text

is left-justified instead of right-justified,
and the caption buttons on the window
will still be

drawn in the LTR position.
But it’s better than nothing.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2011/05/30/10168423.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

