
1/3

December 9, 2013

Destroying all child processes (and grandchildren) when
the parent exits

devblogs.microsoft.com/oldnewthing/20131209-00

Raymond Chen

Today’s Little Program
launches a child process
and then just hangs around.
If you terminate

the parent process,
then all the children (and grandchildren and
great-grandchildren, you get

the idea)
are also terminated.

The tool for this is the
Job Object.
Specifically, we mark the job as
“kill on job close”
which

causes all processes in the job to be terminated
when the last handle to the job is closed.

We must therefore be careful not to allow this handle to be inherited,
because that would

create another handle that needs to be closed before
the job is terminated.
And of course we

need to be careful not to close the handle unless we
really do want to terminate the job.

https://devblogs.microsoft.com/oldnewthing/20131209-00/?p=2433
http://msdn.microsoft.com/en-us/library/windows/desktop/ms684161(v=vs.85).aspx

2/3

#define STRICT

#include <windows.h>

BOOL CreateProcessInJob(

 HANDLE hJob,

 LPCTSTR lpApplicationName,

 LPTSTR lpCommandLine,

 LPSECURITY_ATTRIBUTES lpProcessAttributes,

 LPSECURITY_ATTRIBUTES lpThreadAttributes,

 BOOL bInheritHandles,

 DWORD dwCreationFlags,

 LPVOID lpEnvironment,

 LPCTSTR lpCurrentDirectory,

 LPSTARTUPINFO lpStartupInfo,

 LPPROCESS_INFORMATION ppi)

{

 BOOL fRc = CreateProcess(

 lpApplicationName,

 lpCommandLine,

 lpProcessAttributes,

 lpThreadAttributes,

 bInheritHandles,

 dwCreationFlags | CREATE_SUSPENDED,

 lpEnvironment,

 lpCurrentDirectory,

 lpStartupInfo,

 ppi);

 if (fRc) {

 fRc = AssignProcessToJobObject(hJob, ppi->hProcess);

 if (fRc && !(dwCreationFlags & CREATE_SUSPENDED)) {

 fRc = ResumeThread(ppi->hThread) != (DWORD)-1;

 }

 if (!fRc) {

 TerminateProcess(ppi->hProcess, 0);

 CloseHandle(ppi->hProcess);

 CloseHandle(ppi->hThread);

 ppi->hProcess = ppi->hThread = nullptr;

 }

 }

 return fRc;

}

The
 CreateProcessInJob function
simply creates a process suspended, adds it to a job,

and then resumes the process if the original caller
asked for a running process.

Let’s take it for a spin.

3/3

int __cdecl main(int, char **)

{

HANDLE hJob = CreateJobObject(nullptr, nullptr);

JOBOBJECT_EXTENDED_LIMIT_INFORMATION info = { };

info.BasicLimitInformation.LimitFlags =

 JOB_OBJECT_LIMIT_KILL_ON_JOB_CLOSE;

SetInformationJobObject(hJob,

 JobObjectExtendedLimitInformation,

 &info, sizeof(info));

STARTUPINFO si = { sizeof(si) };

PROCESS_INFORMATION pi;

char szCommandLine[] = "taskmgr.exe";

if (CreateProcessInJob(hJob,

 "C:\\Windows\\System32\\taskmgr.exe",

 szCommandLine,

 nullptr, nullptr, FALSE, 0,

 nullptr, nullptr, &si, &pi)) {

 CloseHandle(pi.hProcess);

 CloseHandle(pi.hThread);

}
Sleep(30 * 1000);

CloseHandle(hJob);

return 0;

}

After creating the job object,
we set the “kill children on close”
flag on the job.
Then we

launch Task Manager into the job
and give you 30 seconds to
do your business.
After that, it’s

“Time’s up, you lose!”
and Task Manager and any processes you launched from Task

Manager
will go away.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2009/06/01/9673254.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

