
1/4

December 2, 2013

Logging the foreground process as it changes
devblogs.microsoft.com/oldnewthing/20131202-00

Raymond Chen

Today’s Little Program simply logs all changes to the foreground
window by recording the

path to the application the user switched to.
You might use this as part of a usability study to

monitor what
applications users spend most of their time in.

Most of this code is just taking things we already know and snapping
them together.

1. Using accessibility to monitor events, specifically
to
monitor foreground changes.

2. GetWindowThreadProcessId
to get the process ID from a window.

3. OpenProcess to get a handle to a process
given the process ID.

4. QueryFullProcessImageName to
get the path to the application from the handle.
(For

Windows XP, you can use
 GetProcessImageFileName .)

Take our
scratch program
and make these changes:

BOOL QueryWindowFullProcessImageName(

 HWND hwnd,

 DWORD dwFlags,

 PTSTR lpExeName,

 DWORD dwSize)

{

DWORD pid = 0;

BOOL fRc = FALSE;

if (GetWindowThreadProcessId(hwnd, &pid)) {

 HANDLE hProcess = OpenProcess(

 PROCESS_QUERY_LIMITED_INFORMATION, FALSE, pid);

 if (hProcess) {

 fRc = QueryFullProcessImageName(

 hProcess, dwFlags, lpExeName, &dwSize);

 CloseHandle(hProcess);

 }

}
return fRc;

}

The QueryWindowFullProcessImageName
function is the meat of the program,
performing

steps 2 through 4 above.

https://devblogs.microsoft.com/oldnewthing/20131202-00/?p=2503
http://blogs.msdn.com/b/oldnewthing/archive/2013/03/25/10404940.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2003/07/23/54576.aspx

2/4

Now we just hook this up in our event callback function.
This should look really familiar,

since we
did pretty much the same thing earlier this year.

http://blogs.msdn.com/b/oldnewthing/archive/2013/03/25/10404940.aspx

3/4

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

g_hwndChild = CreateWindow(TEXT("listbox"), NULL,

 LBS_HASSTRINGS | WS_CHILD | WS_VISIBLE | WS_VSCROLL,

 0, 0, 0, 0, hwnd, NULL, g_hinst, 0);

if (!g_hwndChild) return FALSE;

return TRUE;

}

void CALLBACK WinEventProc(

 HWINEVENTHOOK hWinEventHook,

 DWORD event,

 HWND hwnd,

 LONG idObject,

 LONG idChild,

 DWORD dwEventThread,

 DWORD dwmsEventTime

)

{

if (event == EVENT_SYSTEM_FOREGROUND &

 idObject == OBJID_WINDOW &&

 idChild == CHILDID_SELF)

{
 PCTSTR pszMsg;

 TCHAR szBuf[MAX_PATH];

 if (hwnd) {

 DWORD cch = ARRAYSIZE(szBuf);

 if (QueryWindowFullProcessImageName(hwnd, 0,

 szBuf, ARRAYSIZE(szBuf))) {

 pszMsg = szBuf;

 } else {

 pszMsg = TEXT("<unknown>");

 }

 } else {

 pszMsg = TEXT("<none>");

 }

 ListBox_AddString(g_hwndChild, pszMsg);

}
}

int WINAPI WinMain(HINSTANCE hinst, HINSTANCE hinstPrev,

 LPSTR lpCmdLine, int nShowCmd)

{

...

 ShowWindow(hwnd, nShowCmd);

HWINEVENTHOOK hWinEventHook = SetWinEventHook(

 EVENT_SYSTEM_FOREGROUND,

 EVENT_SYSTEM_FOREGROUND,

 NULL, WinEventProc, 0, 0,

 WINEVENT_OUTOFCONTEXT);

 while (GetMessage(&msg, NULL, 0, 0)) {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

4/4

 }

 if (hWinEventHook) UnhookWinEvent(hWinEventHook);

...

}

The main program installs an accessibility hook for the
 EVENT_SYSTEM_FOREGROUND event,

and each time the event fires,
it extracts the process name and logs it to
the screen.
Since the

notification is asynchronous, the foreground window
may have been destroyed by the time

the notification is received,
so we have to be prepared for that case.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

