
1/2

November 28, 2013

If you try to declare a variadic function with an
incompatible calling convention, the compiler secretly
converts it to cdecl

devblogs.microsoft.com/oldnewthing/20131128-00

Raymond Chen

Consider the following function on an x86 system:

void __stdcall something(char *, ...);

The function declares itself as __stdcall ,
which is a callee-clean convention.
But a variadic

function cannot be callee-clean since the callee
does not know how many parameters were

passed,
so it doesn’t know how many it should clean.

The Microsoft Visual Studio C/C++ compiler resolves this conflict
by silently converting the

calling convention to __cdecl ,
which is the only supported variadic calling convention
for

functions that do not take a hidden this parameter.

Why does this conversion take place silently rather than generating
a warning or error?

My guess is that it’s to make the compiler options
 /Gr (set default calling convention to

__fastcall)
and
 /Gz (set default calling convention to __stdcall)
less annoying.

Automatic conversion of variadic functions to __cdecl
means that you can just add the

/Gr or /Gz
command line switch to your compiler options, and everything will
still

compile and run (just with the new calling convention).

Another way of looking at this is not by thinking of the compiler
as converting variadic

__stdcall to __cdecl
but rather by simply saying
“for variadic functions, __stdcall is

caller-clean.”

Exercise:
How can you determine which interpretation is what the compiler actually does?

In other words, is it the case that the compiler converts
 __stdcall to __cdecl for

variadic functions,
or is it the case that the calling convention for variadic
 __stdcall

functions is caller-clean?

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/20131128-00/?p=2543
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

2/2

Follow

