
1/4

November 18, 2013

How can I launch an unelevated process from my
elevated process and vice versa?

devblogs.microsoft.com/oldnewthing/20131118-00

Raymond Chen

Going from an unelevated process to an elevated process is easy.
You can run a process with

elevation by
passing the runas verb
to ShellExecute or
 ShellExecuteEx .

Going the other way is trickier.
For one thing, it’s really hard to munge your token to remove

the
elevation nature properly.
And for another thing, even if you could do it, it’s not the right

thing to do, because the unelevated user may be different from the
elevated user.

Let me expand on that last bit.

Take a user who is not an administrator.
When that user tries to run a program with

elevation,
the system will display a prompt that says,
“Hey, like, since you’re not an

administrator,
I need you to type the userid and password of somebody
who is an

administrator.”
When that happens, the elevated program is running not as the
original user

but as the administrative user.
Even if the elevated program tried to remove elevation from

its token,
all it managed to do is create an unelevated token
for the administrative user, not

the original user.

Suppose we have Alice Administrator and Bob Banal.
Bob logs on,
and then tries to run

LitWare Dashboard,
which requires elevation.
The prompt comes up, and Bob calls over Alice

to grant
administrative privileges.
Alice types her password, and boom, now LitWare

Dashboard is running
elevated as Alice.

Now suppose LitWare Dashboard wants to launch the user’s Web browser
to show some

online content.
Since there is no reason for the Web browser to run elevated,
it tries to

unelevate the browser in order to reduce the security
attack surface.
If it simply neutered its

token and used that to launch the browser,
it would be running a copy of the browser

unelevated as Alice.
But LitWare Dashboard presumably
really wanted to run the browser as

Bob,
since it is Bob who is the unelevated user in this session.

https://devblogs.microsoft.com/oldnewthing/20131118-00/?p=2643
http://blogs.msdn.com/b/vistacompatteam/archive/2006/09/25/771232.aspx

2/4

The solution here is to go back to Explorer and ask Explorer to
launch the program for you.

Since Explorer is running as the original unelevated user,
the program (in this case, the Web

browser) will run as Bob.
This is also important in the case that the handler for the file
you

want to open runs as an in-process extension rather than as
a separate process,
for in that

case,
the attempt to unelevate would be pointless since no new process
was created in the

first place.
(And if the handler for the file tries to communicate with
an existing unelevated

copy of itself, things may fail because of UIPI.)

Okay, I know that Little Programs are not supposed to have motivation,
but I couldn’t help

myself.
Enough jabber.
Let’s write code.
(Remember that Little Programs do little or no error

checking,
because that’s the way they roll.)

#define STRICT

#include <windows.h>

#include <shldisp.h>

#include <shlobj.h>

#include <exdisp.h>

#include <atlbase.h>

#include <stdlib.h>

// FindDesktopFolderView incorporated by reference

void GetDesktopAutomationObject(REFIID riid, void **ppv)

{

CComPtr<IShellView> spsv;

FindDesktopFolderView(IID_PPV_ARGS(&spsv));

CComPtr<IDispatch> spdispView;

spsv->GetItemObject(SVGIO_BACKGROUND, IID_PPV_ARGS(&spdispView));

spdispView->QueryInterface(riid, ppv);

}

The
 GetDesktopAutomationObject
function
locates the desktop folder view
then asks for

the dispatch object for the view.
We then return that dispatch object in the form requested by

the caller.
This dispatch object is a ShellFolderView ,
and the C++ interface for that is

IShellFolderViewDual ,
so most callers are going to ask for that interface,
but
if you are a

masochist, you can skip the dual interface and
talk directly to IDispatch .

http://blogs.msdn.com/b/oldnewthing/archive/2013/03/18/10403054.aspx

3/4

void ShellExecuteFromExplorer(

 PCWSTR pszFile,

 PCWSTR pszParameters = nullptr,

 PCWSTR pszDirectory = nullptr,

 PCWSTR pszOperation = nullptr,

 int nShowCmd = SW_SHOWNORMAL)

{

CComPtr<IShellFolderViewDual> spFolderView;

GetDesktopAutomationObject(IID_PPV_ARGS(&spFolderView));

CComPtr<IDispatch> spdispShell;

spFolderView->get_Application(&spdispShell);

CComQIPtr<IShellDispatch2>(spdispShell)

 ->ShellExecute(CComBSTR(pszFile),

 CComVariant(pszParameters ? pszParameters : L""),

 CComVariant(pszDirectory ? pszDirectory : L""),

 CComVariant(pszOperation ? pszOperation : L""),

 CComVariant(nShowCmd));

}

The
 ShellExecuteFromExplorer
function
starts by getting the desktop folder automation

object.
We use the desktop not because it’s particularly meaningful
but because we know that

it’s always going to be there.

As with the desktop folder view,
the ShellFolderView object is not interesting
to us for

itself.
It’s interesting to us because the object
resides in the process that is hosting the

desktop view
(which is the main Explorer process).
From the ShellFolderView , we ask for

the
 Application property
so that we can get to the main
 Shell.Application object,

which has the IShellDispatch interface
(and its extensions
 IShellDispatch2 through

IShellDispatch6)
as its C++ interfaces.
And it is the
 IShellDispatch2::ShellExecute

method
that is what we really want.

“You never loved me.
You only wanted me in order
to get access to my family,” sobbed the

shell folder view.

And we call
 IShellDispatch2::ShellExecute with
the appropriate parameters.
Note that

the parameters to
 IShellDispatch2::ShellExecute are
in a different order from the

parameters to
 ShellExecute !

Okay, let’s put this inside a little program.

4/4

int __cdecl wmain(int argc, wchar_t **argv)

{

if (argc < 2) return 0;

CCoInitialize init;

ShellExecuteFromExplorer(

 argv[1],

 argc >= 3 ? argv[2] : L"",

 argc >= 4 ? argv[3] : L"",

 argc >= 5 ? argv[4] : L"",

 argc >= 6 ? _wtoi(argv[5]) : SW_SHOWNORMAL);

return 0;

}

The program takes a mandatory command line argument which is
the thing to execute, be it a

program or a document or a URL.
Optional parameters are the parameters to the thing being

executed,
the current directory to use,
the operation to perform, and how the window should

be opened.

Open an elevated command prompt, and then run this program
in various ways.

scratch http://www.msn.com/ Open an unelevated Web page in the user’s
default Web browser.

scratch cmd.exe "" C:\Users ""
3

Open an unelevated command prompt at
C:\Users , maximized.

scratch C:\Path\To\Image.bmp
"" "" edit

Edit a bitmap in an unelevated image editor.

This program is basically the same as the
Execute in Explorer
sample.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2004/05/20/135841.aspx
http://msdn.microsoft.com/library/dd940355
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

