
1/5

November 15, 2013

Restoring symbols to a stack trace originally generated
without symbols

devblogs.microsoft.com/oldnewthing/20131115-00

Raymond Chen

Has this ever happened to you?

litware!Ordinal3+0x6042

litware!DllInstall+0x4c90

litware!DllInstall+0x4b9e

contoso!DllGetClassObject+0x93c3

contoso!DllGetClassObject+0x97a9

contoso!DllGetClassObject+0x967c

contoso!DllGetClassObject+0x94d7

contoso!DllGetClassObject+0x25ce

contoso!DllGetClassObject+0x2f7b

contoso!DllGetClassObject+0xad55

contoso!DllGetClassObject+0xaec7

contoso!DllGetClassObject+0xadf7

contoso!DllGetClassObject+0x3c00

contoso!DllGetClassObject+0x3b2a

contoso!DllGetClassObject+0x462b

USER32!UserCallWinProcCheckWow+0x13a

USER32!DispatchMessageWorker+0x1a7

contoso!DllCanUnloadNow+0x19b6

contoso!DllGetClassObject+0xeaf2

contoso+0x1d6c

litware!LitImportReportProfile+0x11c4

litware!LitImportReportProfile+0x1897

litware!LitImportReportProfile+0x1a3b

KERNEL32!BaseThreadInitThunk+0x18

ntdll!RtlUserThreadStart+0x1d

Ugh.
A stack trace taken without working symbols.
(There’s no way that
 DllGetClass‐

Object
is a deeply recursive 60KB function.
Just by casual inspection, you know that the

symbols are wrong.)

To see how to fix this, you just have to understand what the
debugger does when it has no

symbols to work from:
It uses the symbols from the exported function table.
For every

address it wants to resolve,
it looks for the nearest exported function whose address is
less

than or equal to the target value.

https://devblogs.microsoft.com/oldnewthing/20131115-00/?p=2653
https://www.youtube.com/watch?v=08xQLGWTSag
https://www.youtube.com/watch?v=1ytCEuuW2_A

2/5

For example, suppose CONTOSO.DLL
has the following exported symbols:

Symbol Offset

DllGetClassObject 0x5132

DllCanUnloadNow 0xFB0B

Look at it this way:
The debugger is given the following information about your module:

(Diagram not to scale.)

 ↑ DllGetClassObject ↑ DllCanUnloadNow

It needs to assign a function to every byte in the module.
In the absence of any better

information, it does it like this:

??? DllGetClassObject DllCanUnloadNow

In words, it assumes that every function begins at the location specified
by the export table,

and it ends one byte before the start of the next function.
The debugger is trying to make the

best of a bad situation.

Suppose your DLL was loaded at
0x10000000,
and the debugger needs to generate a symbolic

name for the address
 0x1000E4F5 .

First, it converts the address into a relative virtual address
by subtracting the DLL base

address,
leaving 0xE4F5 .

Next, it looks to see what function “contains” that address.
From the algorithm described

above,
the debugger concludes that the address 0xE4F5 is
“part of” the
 DllGetClass‐

Object function,
which began at
begins at 0x5132 .
The offset into the function is therefore

0xE4F5 - 0x5132 = 0x93C3 ,
and it is reported in the debugger as
 contoso!DllGet‐

ClassObject+0x93c3 .

Repeat this exercise for each address that the debugger needs to resolve,
and you get the

stack trace above.

Fine, now that you know how the bad symbols were generated,
how do you fix it?

You fix it by undoing what the debugger did, and then redoing it
with better symbols.

http://blogs.msdn.com/b/oldnewthing/archive/2012/12/27/10380848.aspx

3/5

You need to find the better symbols.
This is not too difficult if you still have a matching

binary
and symbol file,
because you can just load up the binary into the debugger
in the style

of a dump file.
Like Doron, you can then let the debugger do the hard work.

C:> ntsd -z contoso.dll

ModLoad: 10000000 10030000 contoso.dll

Now you just ask the debugger,
“Could you disassemble this function for me?”
You give it the

broken symbol+offset above.
The debugger looks up the symbol,
applies the offset,
and then

looks up the correct symbol when disassembling.

0:000> u contoso!DllGetClassObject+0x93c3

contoso!CReportViewer::ActivateReport+0xe9:

10000e4f5 eb05 jmp contoso!CReportViewer::ActivateReport+0xf0

Repeat for each broken symbol in the stack trace,
and you have yourself a repaired stack

trace.

litware!Ordinal3+0x6042 ← oops

litware!CViewFrame::SetInitialKeyboardFocus+0x58

litware!CViewFrame::ActivateViewInFrame+0xf2

contoso!CReportViewer::ActivateReport+0xe9

contoso!CReportViewer::LoadReport+0x12c

contoso!CReportViewer::OnConnectionCreated+0x13f

contoso!CViewer::OnConnectionEvent+0x7f

contoso!CConnectionManager::OnConnectionCreated+0x85

contoso!CReportFactory::BeginCreateConnection+0x87

contoso!CReportViewer::CreateConnectionForReport+0x20d

contoso!CViewer::CreateNewConnection+0x87

contoso!CReportViewer::CreateNewReport+0x213

contoso!CViewer::OnChangeView+0xec

contoso!CReportViewer::WndProc+0x9a7

contoso!CView::s_WndProc+0xf1

USER32!UserCallWinProcCheckWow+0x13a

USER32!DispatchMessageWorker+0x1a7

contoso!CViewer::MessageLoop+0x24e

contoso!CViewReportTask::RunViewer+0x12

contoso+0x1d6c ← oops

litware!CThreadTask::Run+0x40

litware!CThread::ThreadProc+0xe5

litware!CThread::s_ThreadProc+0x42

KERNEL32!BaseThreadInitThunk+0x18

ntdll!RtlUserThreadStart+0x1d

Oops, our trick doesn’t work for that first entry in the stack trace,
the one with Ordinal3 .

What’s up with that?
There is no function called Ordinal3 !

If your module exports functions by ordinal without a name,
then the debugger doesn’t know

what name to print for the function
(since the name was stripped from the module),
so it just

prints the ordinal number.
You will have to go back to your DLL’s DEF file
to convert the

http://blogs.msdn.com/b/doronh/archive/2006/03/20/556053.aspx

4/5

ordinal back to a function name.
Or you can
dump the exports from the DLL
to see what

functions match up with what ordinals.
(Of course, for that trick to work, you need to have a

matching PDB file
in the symbol search path.)

In our example, suppose litware.dll ordinal 3
corresponds to the function
 LitDebug‐

ReportProfile .
We would then ask the debugger

0:001> u litware!LitDebugReportProfile+0x6042

litware!CViewFrame::FindInitialFocusControl+0x66:

1000084f5 33db xor ebx,ebx

Okay, that takes care of our first oops.
What about the second one?

In the second case, the address the debugger was asked to
generate a symbol for came before

the first symbol in the module.
In our diagram above, it was in the area marked with question

marks.
The debugger has absolutely nothing to work with, so it just
disassembles as relative

to the start of the module.

To resolve this symbol, you take the offset and add it to the
base of the module as it was

loaded into the debugger,
which was reported in the ModLoad output:

ModLoad: 10000000 10030000 contoso.dll

If that output scrolled off the screen, you can ask the debugger
to show it again with the help

of the lmm command.

0:001>lmm contoso*

start end module name

10000000 10030000 contoso (export symbols) contoso.dll

Once you have the base address, you
add the offset back
and ask the debugger what’s there:

0:001> u 0x10000000+0x1d6c

contoso!CViewReportTask::Run+0x102:

100001d6c 50 push eax

Okay, now that we patched up all our oopses,
we have the full stack trace with symbols:

http://blogs.msdn.com/b/oldnewthing/archive/2011/05/13/10164020.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2007/04/25/2265923.aspx

5/5

litware!CViewFrame::FindInitialFocusControl+0x66

litware!CViewFrame::SetInitialKeyboardFocus+0x58

litware!CViewFrame::ActivateViewInFrame+0xf2

contoso!CReportViewer::ActivateReport+0xe9

contoso!CReportViewer::LoadReport+0x12c

contoso!CReportViewer::OnConnectionCreated+0x13f

contoso!CViewer::OnConnectionEvent+0x7f

contoso!CConnectionManager::OnConnectionCreated+0x85

contoso!CReportFactory::BeginCreateConnection+0x87

contoso!CReportViewer::CreateConnectionForReport+0x20d

contoso!CViewer::CreateNewConnection+0x87

contoso!CReportViewer::CreateNewReport+0x213

contoso!CViewer::OnChangeView+0xec

contoso!CReportViewer::WndProc+0x9a7

contoso!CView::s_WndProc+0xf1

USER32!UserCallWinProcCheckWow+0x13a

USER32!DispatchMessageWorker+0x1a7

contoso!CViewer::MessageLoop+0x24e

contoso!CViewReportTask::RunViewer+0x12

contoso!CViewReportTask::Run+0x102

litware!CThreadTask::Run+0x40

litware!CThread::ThreadProc+0xe5

litware!CThread::s_ThreadProc+0x42

KERNEL32!BaseThreadInitThunk+0x18

ntdll!RtlUserThreadStart+0x1d

Now the fun actually starts:
Figuring out why there was a break in
 CViewFrame::Find‐

InitialFocusControl .
Happy debugging!

Bonus tip:
By default,
 ntsd does not include line numbers when resolving symbols.
Type

.lines to toggle line number support.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

