
1/4

November 14, 2013

Why is my FormatMessage call crashing trying to read
my insertion parameter?

devblogs.microsoft.com/oldnewthing/20131114-00

Raymond Chen

A customer was looking for assistance in debugging a crash
in their product.
The stack trace

looked like this:

ntdll!_woutput_l+0x356

ntdll!_vsnwprintf_l+0x81

ntdll!_vsnwprintf+0x11

ntdll!RtlStringVPrintfWorkerW+0x3c

ntdll!RtlStringCchPrintfExW+0xa8

ntdll!RtlFormatMessageEx+0x324

KERNELBASE!BaseDllFormatMessage+0x18e

KERNELBASE!FormatMessageW+0x37

contoso!FormatWithFallbackLanguage+0x8a

contoso!RecordFailure+0x56

The string being formatted is
 There was an error processing the object '%1'. ,
and

the insertion is a long (but valid) string.
A unit test which passes a similarly long object name

to
 RecordFailure does not crash.

What is the problem?
There are clues in the stack trace.

The natural place to start is the function that calls
 FormatMessage to see what parameters

are
being passed in.
And that’s where you see something strange:

https://devblogs.microsoft.com/oldnewthing/20131114-00/?p=2663

2/4

// Code in italics is wrong

BOOL FormatWithFallbackLanguage(

 DWORD dwMessageId, PCTSTR pszBuffer, SIZE_T cchBuffer, ...)

{

va_list ap;

va_start(ap, cchBuffer);

// Format from the user's preferred language.

DWORD cchResult = FormatMessage(

 FORMAT_MESSAGE_FROM_HMODULE,

 g_hinst, dwMessageId, g_preferredLangId,

 pszBuffer, cchBuffer, &ap);

// If that didn't work, then use the fallback language.

if (cchResult == 0) {

 cchResult = FormatMessage(

 FORMAT_MESSAGE_FROM_HMODULE,

 g_hinst, dwMessageId, g_fallbackLangId,

 pszBuffer, cchBuffer, &ap);

}
va_end(ap);

return cchResult != 0;

}

(The clue in the stack trace was the word
fallback in the function name,
which suggests that if

the formatting attempt fails,
it’ll try again some other way.)

The purpose of this function is to format the message
using the specified message ID,
first

looking in the preferred language message table,
and if that fails, by looking in the fallback

language
message table.

The crash occurred on the second call to
 FormatMessage .
The customer said,
“I’m guessing

that the parameters being passed to
 FormatMessage
may be causing this,
but I’m not sure

how to proceed.
Can you provide pointers for further investigation?”

The bug is that code is reusing the
 ap parameter without resetting it.
The documentation

for
 FormatMessage says
about the Arguments parameter:

The state of the va_list argument is undefined
upon return from the function.
To use the va_list
again,
destroy the variable argument list pointer using va_end
and reinitialize it with va_start.

The function
 FormatWithFallbackLanguage
calls FormatMessage , which consumes
and

renders unusable the ap variable.
If the first format attempt fails,
the code passes the same

(now invalid)
 va_list to a second
 FormatMessage ,
which is now operating on undefined

data and is
therefore within its rights to crash.

In practice, what happens is that the
 FormatMessage function calls
 va_arg on the

va_list to extract the insertions,
and since va_list s are single-use,
that pretty much

renders it useless for anything else.
If you want to walk the parameters a second time,
you

need to clean up the va_list
and then reinitialize it.

3/4

BOOL FormatWithFallbackLanguage(

 DWORD dwMessageId, PCTSTR pszBuffer, SIZE_T cchBuffer, ...)

{

va_list ap;

va_start(ap, cchBuffer);

// Format from the user's preferred language.

DWORD cchResult = FormatMessage(

 FORMAT_MESSAGE_FROM_HMODULE,

 g_hinst, dwMessageId, g_preferredLangId,

 pszBuffer, cchBuffer, &ap);

// If that didn't work, then use the fallback language.

if (cchResult == 0) {

 va_end(ap);

 va_start(ap, cchBuffer);

 cchResult = FormatMessage(

 FORMAT_MESSAGE_FROM_HMODULE,

 g_hinst, dwMessageId, g_fallbackLangId,

 pszBuffer, cchBuffer, &ap);

}
va_end(ap);

return cchResult != 0;

}

By ending the old argument list and restarting it,
the second call to
 FormatMessage has the

correct starting point
for extracting the variadic parameters.
An alternate (and in my opinion

better) way to fix the bug
would be

BOOL FormatWithFallbackLanguage(

 DWORD dwMessageId, PCTSTR pszBuffer, SIZE_T cchBuffer, ...)

{

va_list ap;

// Format from the user's preferred language.

va_start(ap, cchBuffer);

DWORD cchResult = FormatMessage(

 FORMAT_MESSAGE_FROM_HMODULE,

 g_hinst, dwMessageId, g_preferredLangId,

 pszBuffer, cchBuffer, &ap);

va_end(ap);

// If that didn't work, then use the fallback language.

if (cchResult == 0) {

 va_start(ap, cchBuffer);

 cchResult = FormatMessage(

 FORMAT_MESSAGE_FROM_HMODULE,

 g_hinst, dwMessageId, g_fallbackLangId,

 pszBuffer, cchBuffer, &ap);

 va_end(ap);

}
return cchResult != 0;

}

4/4

This avoids the “magic switcheroo” and more clearly
scopes the region of validity of the ap

variable to “solely for the purpose of the
 FormatMessage function.”

Bonus chatter:
Suppose the FormatWithFallbackLanguage
accepted a va_list

parameter directly.
You might be tempted to implement it like this:

// code in italics is wrong

BOOL FormatWithFallbackLanguage(

 DWORD dwMessageId, PCTSTR pszBuffer, SIZE_T cchBuffer, va_list ap)

{

va_list apOriginal = ap;

// Format from the user's preferred language.

DWORD cchResult = FormatMessage(

 FORMAT_MESSAGE_FROM_HMODULE,

 g_hinst, dwMessageId, g_preferredLangId,

 pszBuffer, cchBuffer, &ap);

// If that didn't work, then use the fallback language.

if (cchResult == 0) {

 cchResult = FormatMessage(

 FORMAT_MESSAGE_FROM_HMODULE,

 g_hinst, dwMessageId, g_fallbackLangId,

 pszBuffer, cchBuffer, &apOriginal);

}
return cchResult != 0;

}

This is not legal because a va_list is not
directly copyable.
Some architectures have rather

complicated calling conventions
that entail memory allocation in order to enumerate the

parameters
passed to variadic functions,
and a bitwise copy will not respect those

complexities.
You have to use the va_copy macro to make a copy
of a va_list .

Exercise:
How did this error elude unit testing?

Exercise:
What else can go wrong in this function?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

