
1/2

November 7, 2013

Partially eliminating the need for
SetThreadpoolCallbackLibrary and reducing the cost of
FreeLibraryAndExitThread

devblogs.microsoft.com/oldnewthing/20131107-00

Raymond Chen

Update:
Daniel points out
that there is still a race condition here, so this trick won’t work.

Rats.

The documentation for the
 SetThreadpoolCallbackLibrary
says

This prevents a deadlock from occurring when one thread in
DllMain is waiting for the callback
to end,
and another thread that is executing the callback
attempts to acquire the loader lock.

If the DLL containing the callback might be unloaded,
the cleanup code in DllMain must cancel
outstanding
callbacks before releasing the object.

Managing callbacks created with a
 TP_CALLBACK_ENVIRON
that specifies a callback library
is somewhat processor-intensive.
You should consider other options for ensuring that the library
is not unloaded while callbacks are executing,
or to guarantee that callbacks which may be
executing
do not acquire the loader lock.

I’m not going to help you with the DllMain cleanup issues.
(My plan is to simply avoid the

issue by preventing the DLL
from unloading while a callback is still pending.
That way, you

never have to cancel the callback from DllMain.)
But I am going to help with the
“consider

other options for ensuring that the library is not
unloaded while callbacks are executing.”

The first-pass solution is to use the same trick we use
when creating worker threads:
We

bump the DLL reference count when queueing the work item
and use
 FreeLibraryWhen‐

CallbackReturns
to decrement the reference count after the callback finishes.
(We can’t

use
 FreeLibraryAndExitThread ,
of course, since we’re running on a thread on loan to us

from the thread pool.
Exiting the thread from a thread pool callback is like
demolishing the

house you’re renting.)

https://devblogs.microsoft.com/oldnewthing/20131107-00/?p=2713
http://blogs.msdn.com/b/oldnewthing/archive/2013/11/07/10464408.aspx#10464658
http://blogs.msdn.com/b/oldnewthing/archive/2013/11/05/10463645.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/04/30/10004931.aspx

2/2

The second-pass solution is to
manage the DLL reference count manually.
(Don’t go down

this route unless your profiling suggests that
DLL reference count management is a

performance bottleneck.)
The rule is still that the DLL reference count is prevented
from

dropping to zero while a callback is pending,
but instead of incrementing the reference count

each time
we scheduled a callback,
we’ll increment it only when the number of callbacks goes

from zero to nonzero.
Conversely, we decrement the reference count only when the
number

of callbacks drops from nonzero to zero.

You can think of this as proxying the reference count,
similar to how COM creates proxies

that collapse
 AddRef and Release
calls and signal the remote object only when the

reference
count transitions from zero to nonzero or vice versa.

This optimization works for
 FreeLibraryAndExitThread ,
too,
so let’s fold that in while

we’re there.

LONG g_lProxyRefCount = 0;

BOOL ProxyAddRefThisDll()

{

if (InterlockedIncrement(&g_lProxyRefCount) == 1) {

 HMODULE hmod;

 return GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS,

 reinterpret_cast<LPCTSTR>(g_hinstSelf),

 &hmod);

}
return TRUE;

}

DECLSPEC_NORETURN

void ProxyFreeLibraryAndExitThread(DWORD dwExitCode)

{

if (InterlockedDecrement(&g_lProxyRefCount) == 0) {

 FreeLibraryAndExitThread(g_hinstSelf, dwExitCode);

} else {

 ExitThread(dwExitCode);

}
}

void ProxyFreeLibraryWhenCallbackReturns(PTP_CALLBACK_INSTANCE pci)

{

if (InterlockedDecrement(&g_lProxyRefCount) == 0) {

 FreeLibraryWhenCallbackReturns(pci, g_hinstSelf);

}
}

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

