
1/2

November 6, 2013

CoUninitalize will ask a DLL if it is okay to unload now,
but the answer is a foregone conclusion

devblogs.microsoft.com/oldnewthing/20131106-00

Raymond Chen

The
 DllCanUnloadNow entry point
is exported by COM in-proc servers.
COM host

applications call
 CoFreeUnusedLibraries periodically
to ask COM to do DLL

housecleaning,
and in response, COM asks each DLL if it is okay to be unloaded.
If so, then

COM unloads the DLL.

What is not well-known is that COM also does DLL housecleaning
when you shut down the

last apartment by calling
 CoUninitialize .
When that happens, COM will still go around

asking each DLL
whether it’s okay to be unloaded,
but the question is merely a formality,

because
regardless of your answer, COM will unload you anyway.

The story here is that COM is being shut down for the process,
so COM knows that when the

last
 CoUninitialize is finished,
all COM objects will be destroyed.
After all, if you don’t

have COM, then you can’t have any COM objects.

As a courtesy, COM will ask you,
“Is it okay to unload you?”
in case you want to do some early

cleanup.
But it will ignore your answer.

This means that you need to exercise caution if you call
 CoUninitialize or
 CoFree‐

UnusedLibraries from
your COM in-proc server,
because the call may end up freeing your

code out from under you.

For example, one third-party crash I investigated boiled down to a
COM object whose

destructor went like this:

MyComObject::~MyComObject()

{

.. blah blah blah ..

// Let DllCanUnloadNow know that we have one

// fewer active COM object

_Module.Unlock();

CoFreeUnusedLibraries();

}

https://devblogs.microsoft.com/oldnewthing/20131106-00/?p=2723

2/2

It so happened that this was the last COM object created
by the DLL,
so the

_Module.Unlock() call dropped
the DLL object count to zero.
The COM server then

inexplicably called
 CoFreeUnusedLibraries (something
that is supposed to be called by

the host, not a plug-in),
and
 CoFreeUnusedLibraries did
what it was told and asked each

DLL,
“Hey,
do you mind if I unload you now?”
The DLL’s
 DllCanUnloadNow function
saw

that the active COM object count was zero,
so it said,
“Sure, go ahead.”

I hope you see where this is going.

COM unloads your DLL because you said you were okay
with it.
The call to
 CoFreeUnused‐

Libraries eventually
returns,
but its return address is inside the MyComObject
destructor,

which was unloaded because
you said it was okay to unload.

The fix here is to remove the call to
 CoFreeUnusedLibraries .
It shouldn’t have been there

in the first place.

A more common error is creating a background thread
without bumping the DLL reference

count.
When the last COM apartment shuts down, COM will free
your DLL,
thereby

stranding your worker thread.
You need to use the
 FreeLibraryAndExitThread
trick to

keep your DLL loaded until the background thread finishes.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2013/11/05/10463645.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

