
1/4

November 5, 2013

What is the point of FreeLibraryAndExitThread?
devblogs.microsoft.com/oldnewthing/20131105-00

Raymond Chen

The FreeLibraryAndExitThread
function seems pointless.
I mean, all the function does is

DECLSPEC_NORETURN

void WINAPI FreeLibraryAndExitThread(

 HMODULE hLibModule,

 DWORD dwExitCode)

{

 FreeLibrary(hLibModule);

 ExitThread(dwExitCode);

}

Who needs such a trivial function?
If I wanted to do that, I could just write it myself.

DWORD CALLBACK MyThreadProc(void *lpParameter)

{

 ... blah blah blah ...

 // FreeLibraryAndExitThread(g_hinstSelf, 0);

 FreeLibrary(g_hinstSelf);

 ExitThread(0);

}

And then you discover that occasionally your program crashes.
What’s going on?

Let’s rewind and look at the original problem.

Originally, you had code that did something like this:

https://devblogs.microsoft.com/oldnewthing/20131105-00/?p=2733

2/4

DWORD CALLBACK SomethingThreadProc(void *lpParameter)

{

... do something ...

return 0;

}

void DoSomethingInTheBackground()

{

DWORD dwThreadId;

HANDLE hThread = CreateThread(nullptr, 0, SomethingThreadProc,

 nullptr, 0, &dwThreadId);

if (hThread) CloseHandle(hThread);

}

This worked great, until somebody did this to your DLL:

HMODULE hmodDll = LoadLibrary(TEXT("awesome.dll"));

if (hmodDll) {

auto pfn = reinterpret_cast<decltype(DoSomethingInTheBackground)*>

 (GetProcAddress(hmodDll, "DoSomethingInTheBackground"));

if (pfn) pfn();

FreeLibrary(hmodDll);

}

This code fragment calls your
 DoSomethingInTheBackground
function and then

immediately unloads the DLL,
presumably because all they wanted to do was call that one

function.

Now you have a problem:
That
 FreeLibrary
call frees your DLL,
while your
 Something‐

ThreadProc is still running!
Result:
A crash at an address where there is no code.
Older

debuggers reported this as a crash in ⟨unknown⟩;
newer ones can dig into the recently-

unloaded modules list
and report it as a crash in
 awesome_unloaded .

This is a very common class of error.
When I helped out the application compatibility team

by looking at crashes in third-party code,
the majority of the crashes I looked at in Internet

Explorer
were of this sort,
where a plug-in got unloaded while it still had a running thread.

How do you prevent your DLL from being unloaded while you still
have code running (or

have registered callbacks)?
You perform a bonus LoadLibrary on yourself,
thereby

bumping your DLL reference count by one.

If you don’t need to support Windows 2000,
you can use the new GetModuleHandleEx

function,
which is much more convenient and probably a lot faster, too.

http://blogs.msdn.com/b/oldnewthing/archive/2010/06/02/10018606.aspx

3/4

BOOL IncrementDLLReferenceCount(HINSTANCE hinst)

{

HMODULE hmod;

return GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS,

 reinterpret_cast<LPCTSTR>(hinst),

 &hmod);

}

Bumping the DLL reference count means that when the original person
who called Load‐

Library finally calls
 FreeLibrary ,
your DLL will still remain in memory because the

reference count
has not yet dropped all the way to zero because you have taken
a reference to

the DLL yourself.

When you unregister your callback or your background thread finishes,
you call
 Free‐

Library to release your reference to the DLL,
and if that’s the last reference, then the DLL

will be unloaded.

But wait, now we have a problem.
When you call
 FreeLibrary to release your reference to

the DLL,
that call might end up unloading the code that is making the call.
When the call

returns, there is no more code there.
This most commonly happens when you are calling

FreeLibrary on yourself and that was the last reference.
In rarer circumstances, it

happens indirectly through a
chain of final references.

Let’s walk through that scenario again, since understanding it is central
to solving the

problem.

1. Some application calls LoadLibrary on your DLL.
The reference count on your DLL

is now 1.

2. The application calls a function in your DLL that uses a background
thread.

3. Your DLL prepares for the background thread by doing a
 GetModuleHandleEx on

itself,
to avoid a premature unload.
The reference count on your DLL is now 2.

4. Your DLL starts the background thread.

5. The application decides that it doesn’t need your DLL any more,
so it calls Free‐

Library .
The reference count on your DLL is now 1.

6. Your DLL background thread finishes its main work.
The thread procedure ends with

the lines

 FreeLibrary(g_hinstSelf);

 return 0;

7. The thread procedure calls
 FreeLibrary(g_hinstSelf)
to drop its reference count.

8. The
 FreeLibrary function frees your DLL.

9. The
 FreeLibrary function returns to its caller,
namely your thread procedure.

10. Crash, because your thread procedure was unloaded!

4/4

This is why you need
 FreeLibraryAndExitThread :
So that the return address of the

FreeLibrary
is not in code that’s being unloaded by the
 FreeLibrary itself.

Change the last two lines of the thread procedure to
 FreeLibraryAndExit‐

Thread(g_hinstSelf, 0);
and watch what happens.
The first five steps are the same, and

then we take a turn:

6. Your DLL background thread finishes its main work.
The thread procedure ends with a

call to

 FreeLibraryAndExitThread(g_hinstSelf, 0);

7. The
 FreeLibraryAndExitThread
function calls
 FreeLibrary(g_hinstSelf) .

8. The
 FreeLibrary function frees your DLL.

9. The
 FreeLibrary function returns to its caller,
which is not your thread procedure

but rather the
 FreeLibraryAndExitThread
function,
which was not unloaded.

10. The
 FreeLibraryAndExitThread
function calls ExitThread(0) .

11. The thread exits and no further code is executed.

That’s why the
 FreeLibraryAndExitThread
function exists:
So you don’t pull the rug out

from underneath yourself.
Instead, you have somebody else pull the rug for you.

This issue of keeping your DLL from unloading prematurely
rears its head in several ways.

We’ll look at some of them in the next few days.

Bonus chatter:
The thread pool version of
 FreeLibraryAndExitThread
is
 Free‐

LibraryWhenCallbackReturns .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

