
1/2

October 25, 2013

My, those threads start up really fast nowadays
devblogs.microsoft.com/oldnewthing/20131025-00

Raymond Chen

Here’s a little puzzle
inspired by an actual bug:

// global variable

DWORD g_WorkerThreadId;

bool IsRunningOnWorkerThread()

{

 return GetCurrentThreadId() == g_WorkerThreadId;

}

bool LaunchWorkerThread()

{

HANDLE hThread = CreateThread(nullptr, 0,

 WorkerThread,

 nullptr, 0,

 &g_WorkerThreadId);

if (hThread != nullptr) {

 CloseHandle(hThread);

 return true;

}
return false;

}

DWORD CALLBACK WorkerThread(void *Proc)

{

 // Can this assertion ever fire?

 assert(IsRunningOnWorkerThread());

 return 0;

}

Can the assertion at the start of WorkerThread
ever fire?

Naturally, the answer is Yes,
otherwise it wouldn’t be a very interesting article.

The assertion can fire if the worker thread starts running
before the call the CreateThread

returns.
In that case, the caller hasn’t yet received the
handle or ID of the newly-started

thread.
The new thread calls
 IsRunningOnWorkerThread ,
which returns false since

g_WorkerThreadId hasn’t been initialized yet.

The actual bug was something along the lines of this:

https://devblogs.microsoft.com/oldnewthing/20131025-00/?p=2833

2/2

void DoSomething()

{

 if (IsRunningOnWorkerThread()) {

 .. do it one way ..

 } else {

 .. do it the other way ..

 }

}

void DoManyThings()

{

 DoSomething();

 DoSomethingElse();

 DoYetAnotherThing();

}

DWORD CALLBACK WorkerThread(void *Proc)

{

 ...

 DoManyThings();

 ...

 return 0;

}

If the new thread started up so quickly that the original thread
doesn’t get a chance to receive

the new thread ID and put
it into
 g_WorkerThreadID ,
then the DoSomething function

called from the worker thread will accidentally do things
the not-on-the-worker-thread way,

and then things start go go awry.

One way to address is is to add suspenders to your belt:

DWORD CALLBACK WorkerThread(void *Proc)

{

 g_WorkerThreadId = GetCurrentThreadId();

 ...

By having both the original thread and the created thread
set the g_WorkerThreadId

variable,
you cover both cases of the race.
If the original thread runs faster, then the

CreateThread function will set the
 g_WorkerThreadId variable to the ID of the worker

thread,
and the first line of WorkerThread
will be redundant.
On the other hand, if the

worker thread runs faster,
then the assignment at the beginning of
 WorkerThread sets the

thread ID,
and the assignment performed by
the CreateThread function will be redundant.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

