
1/2

October 23, 2013

It rather involved being on the other side of this airtight
hatchway: Planting DLLs into directories on the PATH for
applications whose current directory is always System32

devblogs.microsoft.com/oldnewthing/20131023-00

Raymond Chen

A bunch of security vulnerability reports came in from the same person, all of the form,

“Program X is vulnerable to DLL planting if you create a DLL with the name Y in a directory

on the PATH,” with varying values of X and Y. In all the cases, Program X runs as SYSTEM

with the System32 directory as its current directory, so a current directory attack does not

apply here. The only remaining directory to attack is the PATH.
But if you can attack the

PATH for the SYSTEM user, then you are already on the other side of the airtight hatchway.

The default PATH directories are all directories which are read-only to non-administrative

users. In order to plant a DLL there, you must already be an administrator, at which point

you are on the other side of the airtight hatchway. If you gain administrative access, then why

bother planting DLLs in sneaky places? You already pwn the machine. Just do whatever you

want! In other words, planting a DLL into secured directories can be carried out only by

administrators, at which point it’s just the administrator attacking his own computer. Not

interesting.
The next angle of investigation is whether somebody can sneak an insecure

directory onto the global PATH. But modifying the global PATH requires administrative

privileges, so if you have the privilege to add an insecure directory to the path, you are

already an administrator, so this is another case of an administrator attacking his own

computer. Still not interesting.
Finally, the third option is that some application, as part of its

installation, added an insecure directory to the global PATH. But in that case, you don’t need

to do any DLL planting at all. Just put a rogue executable on the PATH. For example, you

might call it tpye.exe , so that somebody who typos the type  command runs your rogue

executable instead. In other words, in order for DLL planting into an insecure directory on

the global PATH to work, you must already have a system whose integrity has already been

violated, albeit inadvertently in this case. If you have an attack along these lines, then the

security vulnerability is in the application whose installer added an insecure directory to the

global PATH. This is another case of If you set up an insecure system, don’t be surprised that

there’s a security vulnerability.

https://devblogs.microsoft.com/oldnewthing/20131023-00/?p=2853
http://blogs.msdn.com/b/oldnewthing/archive/2010/11/10/10088566.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/01/14/9948124.aspx


2/2

Now, there is still a flaw in the application that gets tricked into loading the rogue DLL. It

should be more specific about how it loads DLLs so it doesn’t load the wrong one by accident.

But there is no elevation of privilege, since only administrators can trick the application into

loading the wrong DLL.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

