
1/2

October 18, 2013

The case of the redirected standard handles that won't
close even though the child process has exited (and a
smidge of Microspeak: reduction)

devblogs.microsoft.com/oldnewthing/20131018-00

Raymond Chen

A customer had a supervisor process whose job is to launch two threads. Each thread in turn

launches a child process, let’s call them A and B, each with redirected standard handles. They

spins up separate threads to read from the child processes’ stdout in order to avoid

deadlocks. What they’ve found is that even though child process A has exited, the threads

responsible for monitoring the output of child process A will get stuck in the ReadFile until

child process B also exits.
The customer further reported that if they added a brief Sleep

call between creating the thread that launches child process A and creating the thread that

launches child process B, then the problem goes away.
The customer attached a small sample

program which demonstrated the same issue and asked for advice on how to diagnose and fix

the problem.
First of all, it was great of the customer to include a small sample program that

demonstrates the problem. This is an important step in troubleshooting, which goes by the

Microspeak term reduction.

re·duc·tion. n. The process of simplifying a bug to the smallest scenario that still reproduces it.

For source code, this usually takes the form of a small sample program. For Web pages, this

means removing irrelevant styles, script, and HTML. In both cases, the reduction can be

substantial. (You’d be surprised how big Web pages are nowadays.)
Reduction is so

important that our defect tracking database has a special field: Reduced by.
I took a look at

the sample program and didn’t see anything obviously wrong with it. One of my colleagues,

however, was able to use his psychic powers to determine the problem without even reading

the code!

https://devblogs.microsoft.com/oldnewthing/20131018-00/?p=2893
http://blogs.msdn.com/b/oldnewthing/archive/2011/07/07/10183884.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2012/08/24/10342533.aspx

2/2

I’ll bet $10 that you’re launching processes in parallel, specifying TRUE for bInherit‐
Handles but not using a PROC_THREAD_ATTRIBUTE_HANDLE_LIST . You create your pipe
handles inheritable and give them to your children. The problem is that if thread 1 is in the
middle of setting up these inheritable handles for child process A, and thread 2 calls Create‐
Process for child process B, then child process B will accidentally inherit the handles
intended for child process A. As a result, child process B unwittingly holds open the pipe
handles you gave to child process A. Reads from a pipe will not return EOF until all writers
have closed the handle, so the visible effect is that the monitoring thread for child process A
will not complete its read until child process B also exits.

Another possibility is that the child processes are launching their own child processes which are
inadvertently inheriting the pipe handles.

(Turns out the first guess was right on the money.)
The solution is to use the technique we

discussed a few years ago: Use the PROC_THREAD_ATTRIBUTE_HANDLE_LIST to control

explicitly which handles are inherited by specific child processes.

If the client application must run on versions of Windows prior to Windows Vista, then they

can use the workaround described in the linked article: Manually serialize the calls which set

up and then launch the child processes, so that handle inheritance management for a child

process don’t start until the previous one has completed.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2011/07/08/10184375.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/12/16/10248328.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

