
1/2

October 16, 2013

Why does my window get a WM_ACTIVATE message
when it isn't active?

devblogs.microsoft.com/oldnewthing/20131016-00

Raymond Chen

Say you launch a program, and for whatever reason the program takes a long time to start up,

so you start doing something else, say launching Calculator and balancing your checkbook.

Eventually, the program you launched a while back gets itself off the ground and creates its

main window. And the window sits in the background (since the window manager won’t let it

steal foreground activation), but the caret is blinking in the edit control, and the program

seems to think it’s the active window.
If you write a test program to do this, say by sticking a

Sleep(10000) at the start of your WinMain , you’ll see that your window gets a

WM_ACTIVATE message that says “Yup, you’re active.”
But you’re not.
Or are you?
What’s

going on here?
Let’s rewind to 16-bit Windows. The active window was the top-level window

that receives input. You could make a window active by clicking on it or by selecting it via

Alt + Tab or any number of other operations. A program could change the active window

by calling the SetActiveWindow function explicitly, or by performing a number of other

operations which imply changing the active window. (For example, depending on the

parameters you pass, ShowWindow and SetWindowPos may make the window active as

well as showing/repositioning it.) There was only one active window at a time; if a program

set itself as the active window, then the previous active window lost activation.
Okay, now

let’s move forward to Win32. Recall that in Win32, most of the state that used to be global

became thread-local.¹ This was done to permit the asynchronous input model, where each

thread gets its own input queue. This means each thread gets its own mouse cursor show

state, each thread gets its own caret, each thread gets its own focus window, and so on. And

one of the and-so-on bits is that each thread gets its own active window.
What you’re seeing

is a thread which has an active window which is not the foreground window. The thread also

has a focus window, and when an edit control gets the focus, it draws a blinky caret. Mind

you, the window is not the foreground window, so your input doesn’t actually go to it, but the

window doesn’t know that. It’s sitting around as an active window, wondering why nobody is

typing anything.
So now you know what’s going on. Mind you, there’s nothing actually wrong

with this situation. In fact, it’s a sign that the virtualization is doing what it’s supposed to do:

The thread is living in its own world, a world designed to be compatible with the 16-bit world

where there was only one active window.
Footnote

https://devblogs.microsoft.com/oldnewthing/20131016-00/?p=2913
http://blogs.msdn.com/oldnewthing/archive/2009/12/17/9937972.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/07/20/10040074.aspx#10040488

2/2

¹ Or, more nitpickily, local to the input thread group. Since most input thread groups consist

of a single thread, I’ll just write thread and leave you to insert “or input thread group” as

necessary. But you knew that, because it’s one of the five things every Win32 programmer

should know.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

