
1/2

October 2, 2013

The relationship between module resources and
resource-derived objects in 16-bit Windows

devblogs.microsoft.com/oldnewthing/20131002-00

Raymond Chen

As we saw last time, in 16-bit Windows, resources attached to an EXE or DLL file (which I

called module resources for lack of a better term) were recorded in memory as discardable

global memory blocks, and the window manager accessed them directly as needed. For

example, if you had an icon or a cursor, the HICON or HCURSOR was really a resource

handle, and when the window manager needed to draw the icon or cursor, it would cast the

icon or cursor handle to a global handle (since that’s what it was under the hood), then call

LockResource to access the raw resource data in order to copy the pixels onto the screen.

Similarly, accelerator tables were simply locked and accessed directly.
On the other hand,

some resources were actually templates for other objects. As suggested by their names, dialog

and menu templates were just the blueprints for creating a dialog or menu. When you called

CreateDialog or LoadMenu , the template was read from memory, and a fresh new dialog

or menu was created based on the template. Once that was done, the template was no longer

used. You could modify the resulting dialog or menu all you want, and you were also on the

hook for making sure it is destroyed. (Either by destroying it yourself or by transferring that

obligation to somebody else.)
Bitmap resources worked the same way. The resource data is a

template for a new bitmap, and each time you called LoadBitmap (or one of its moral

equivalents), a brand new bitmap was created using the resource as a template. Once that

was done, the template was no longer used, and you could modify the copy to your heart’s

content. (And you were also responsible for destroying it when you were done.)
String

resources were typically copied out of the resource section, either by the LoadString

function or explicitly by your custom string extractor. The lifetime of the copied string was

therefore controlled by you, and you could modify the copied string all you like since it was

just a copy.
If your custom string extractor simply returned a direct pointer to the resource

rather than copying, then the pointer became invalid when the module was unloaded.
Okay,

let’s summarize in a table:

Resource type Operation Result

Icon LoadIcon , etc. Reference

https://devblogs.microsoft.com/oldnewthing/20131002-00/?p=3053
http://blogs.msdn.com/b/oldnewthing/archive/2013/10/01/10453238.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/01/30/65013.aspx

2/2

16-bit Resources

Cursor LoadCursor , etc. Reference

Accelerator LoadAccelerator , etc. Reference

Dialog CreateDialog , etc. Copy

Menu LoadMenu , etc. Copy

Bitmap LoadBitmap , etc. Copy

String LoadString Copy

String FindResource Reference

Some of these rules changed in the conversion from 16-bit Windows to 32-bit Windows, but

in a way that tried to preserve the semantics of the operations. We’ll look at those changes

next time.

But even before you get to that article, you have enough information to answer this

customer’s question:

How do I recover the dialog ID from a dialog if I have the dialog’s window handle?

This is like asking, “How do I recover the recipe book that a particular cake was made from?”

The cake does not know what recipe book it was made from. You might be able to do a

chemical analysis followed by a thorough survey of all cookbooks in existence to try to find a

match, but even if you do, it’s merely a best-guess. (And if the dialog was modified after being

created, then you will never find a match. Just like you will never find a cake recipe match if

somebody decided to modify the cake after it came out of the oven.)

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2013/10/03/10453905.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

