
1/2

October 1, 2013

The management of memory for resources in 16-bit
Windows, redux

devblogs.microsoft.com/oldnewthing/20131001-00

Raymond Chen

Some time ago, I briefly ran down how 16-bit Windows managed memory for resources. But

there’s a detail that I neglected to mention: Ownership.
As we saw, a resource handle HRSRC

was really a pointer to the resource directory entry of the resource from the corresponding

module. This could be done with a 16-bit pointer because the segment portion of the pointer

could be inferred from the module the resource belonged to. In fact, since modules could be

relocated in memory at run time due to compaction, you had better not try to remember the

segment portion of the pointer since it could change!
The FindResource function located

the resource directory entry. The LoadResource function allocated memory for the

resource and loaded it from disk. The LockResource function locked the memory so you

could access it. If two people tried to load the same resource, the memory for the resource

was re-used so there was only one copy in memory, and if both people free the resource, the

resource is cached in case somebody asks for it again soon.
Now things get interesting: When

does the resource get removed from the cache? What actually controls the lifetime of the

resource?
Answer: The resource lifetime is tied to the module it came from. When the

module is unloaded, all its resources are unloaded along with it. (Note that even if a resource

is cached, its contents can get discarded if it is tagged as DISCARDABLE .)
In Win32, modules

are directly mapped into memory, and along with it, the resources. Therefore, accessing the

resources of a module is a simple matter of figuring out where they got mapped (Find‐

Resource and friends will tell you), and then reading the memory directly. So despite the

radical change to resources work, the basic rules haven’t changed: The resources are good as

long as the module is still in memory.

But there are resources and then there are resources. So far, we’ve been talking about

resources in the sense of FindResource , which I will call module resources for lack of a

better term. But people often work with objects like icons and bitmaps which are not literally

resources but which are derived from resources. Next time, we’ll look at the relationship

between module resources and resource-derived objects in 16-bit Windows.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20131001-00/?p=3063
http://blogs.msdn.com/b/oldnewthing/archive/2004/02/02/66159.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

2/2

