
1/2

September 18, 2013

SubtractRect doesn't always give you the exact
difference

devblogs.microsoft.com/oldnewthing/20130918-00

Raymond Chen

The SubtractRect function takes a source
rectangle and subtracts out the portion which

intersects
a second rectangle,
returning the result in a third rectangle.
But wait a second,
the

result of subtracting one rectangle from another need not
be another rectangle.
It might be

an L-shape,
or it might be a rectangle with a rectangular hole.
How does this map back to a

rectangle?

The documentation for
 SubtractRect says
that the function performs the subtraction

when they
“intersect completely in either the x- or y-direction.”
But I prefer to think of it as

the alternate formulation
offered in the documentation:
“In other words, the resulting

rectangle is the bounding box
of the geometric difference.”

I was reminded of this subject when I saw some code
that tried to do rectangle manipulation

like this:

// Clip rcA to be completely inside rcB.

RECT rcSub;

// rcSub = the part of rcA that stick out beyond rcB

if (SubtractRect(&rcSub, &rcA, &rcB)) {

 // Remove that part from rcA

 SubtractRect(&rcA, &rcA, &rcSub);

}

If the rectangle rcA extends beyond rcB
in more than one direction,
then the geometric

difference will not be rectangular,
and the result of
 SubtractRect
will be expanded to the

bounding box of the difference,
which means that it will return rcA again.
And then the

second line will subtract it all out,
leaving the rectangle empty.

Oops.

What they really wanted was

// Clip rcA to be completely inside rcB.

IntersectRect(&rcA, &rcA, &rcB);

https://devblogs.microsoft.com/oldnewthing/20130918-00/?p=3203

2/2

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

