
1/2

September 13, 2013

How does InterlockedIncrement work internally?
devblogs.microsoft.com/oldnewthing/20130913-00

Raymond Chen

The
Interlocked
family of functions perform atomic operations
on memory.
How do they do

it?

It depends on the underlying CPU architecture.
For some CPUs, it’s easy:
The x86, for

example, has direct support for many interlocked operations
by means of the
LOCK prefix

(with the bonus feature that LOCK is implied for the
 XCHG opcode.)
The ia64 and x64 also

have
direct support for atomic load-modify-store operations.

Most other architectures break the operation into two parts,
known as
Load-link/store-

conditional.
The first part (load-link) reads a value from memory and instructions
the

processor to monitor the memory address to see if any other
processors modify that same

memory.
The second part (store-conditional) stores a value to memory
provided that no

other processors have written to the memory
in the meantime.
An atomic load-modify-store

operation is therefore performed by
reading the value via load-link,
performing the desired

computation,
then
attempting a store-conditional.
If the store-conditional fails,
then start all

over again.

LONG InterlockedIncrement(LONG volatile *value)

{

 LONG lOriginal, lNewValue;

 do {

 // Read the current value via load-link so we will know if

 // somebody has modified it while we weren't looking.

 lOriginal = load_link(value);

 // Calculate the new value

 lNewValue = lOriginal + 1;

 // Store the value conditionally. This will fail if somebody

 // has updated the value in the meantime.

 } while (!store_conditional(value, lNewValue));

 return lNewValue;

}

(If this looks familiar, it should.
You’ve seen this pattern before.)

https://devblogs.microsoft.com/oldnewthing/20130913-00/?p=3243
http://msdn.microsoft.com/en-us/library/ms684122.aspx
http://www.cs.ucla.edu/~kohler/class/04f-aos/ref/i386/LOCK.htm
http://en.wikipedia.org/wiki/Load-Link/Store-Conditional
http://blogs.msdn.com/b/oldnewthing/archive/2004/09/15/229915.aspx

2/2

Now, asking the CPU to monitor a memory address comes with its own
gotchas.
For one

thing, the CPU can monitor only one memory address at a time,
and its memory is very

short-term.
If your code gets pre-empted or if a hardware interrupt comes in
after your

load_link , then your
 store_conditional will fail because the CPU got distracted
by the

shiny object known as hardware interrupt and totally
forgot about that memory address it

was supposed to be monitoring.
(Even if it managed to remember it, it won’t remember it for

long,
because the hardware interrupt will almost certainly execute its own
 load_link

instruction, thereby replacing the monitored
address with its own.)

Furthermore, the CPU might be a little sloppy in its monitoring
and monitor not the address

itself but
the cache line.
If somebody modifies a different memory location which happens to

reside in the same cache line, the store_conditional
might fail even though you would

expect it to succeed.
The ARM architecture allows a processor to be so sloppy that
any write

in the same block of 2048 bytes can cause a
 store_conditional to fail.

What this means for you, the assembly-language coder who is
implementing an interlocked

operation, is that you need to minimize
the number of instructions between the
 load_link

and store_conditional .
For example,
 InterlockedIncrement merely adds 1 to the

value.
The more instructions you insert between the
 load_link and store_conditional ,

the greater the chance that your store_conditional will fail
and you will have to retry.

And if you put too much code in between, your
 store_conditional will never succeed.
As

an extreme example, if you put code that
takes five seconds to calculate the new value,
you

will certainly receive several hardware interrupts during those
five seconds, and your

store_conditional will always fail.

Bonus reading:
Why did InterlockedIncrement/Decrement only return the sign of the

result?

Raymond Chen

Follow

http://drdobbs.com/go-parallel/article/showArticle.jhtml?articleID=217500206
http://blogs.msdn.com/b/oldnewthing/archive/2004/05/06/127141.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

