
1/2

September 5, 2013

Why are my posted messages getting lost when the user
drags my window around?

devblogs.microsoft.com/oldnewthing/20130905-00

Raymond Chen

This question was inspired by an actual customer question,
but I changed a lot of it around to

make for a more interesting story.
(Trust me, the original story was even more boring.)

A customer’s background thread posted a message to the main UI thread
to signal something

(details not important).
They found that the posted message was never received if the user

was
in the process of dragging the main window around at the time the message
was posted.

Why would dragging a window cause posted messages to be lost?
“We used to post a thread

message, but then we saw that
thread messages are eaten by modal loops,
so we switched to

posting a message, as you recommended.
But that didn’t help.”

Dragging a window doesn’t cause messages to be lost.
The modal loop
created by the window

dragging code
calls
 DispatchMessage
to deliver the posted message to its target window’s

window procedure.

“Oh, we don’t handle the message in the window procedure.
We process it here:

BOOL MyApp::PreTranslateMessage(MSG *pmsg)

{

 if (pmsg->message == OUR_SPECIAL_MESSAGE) {

 ... special code here ...

 return TRUE; // handled

 }

 return FALSE; // not handled

}

Could that be the problem?”

Yes, that’s the problem.

The customer saw the recommendation to use PostMessage
instead of PostThread‐

Message but simply
blindly followed the advice rather than
understanding its rationale
so

they could apply the advice correctly.

https://devblogs.microsoft.com/oldnewthing/20130905-00/?p=3313
http://blogs.msdn.com/b/oldnewthing/archive/2005/04/26/412116.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2005/02/21/377337.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2009/11/04/9917052.aspx

2/2

If you read
the original recommendation,
you’ll see that the problem is that when a modal

loop runs,
your message loop is no longer in control,
and therefore any customizations you’ve

made to your message loop
will not be in effect.
This is normally a good thing.
For example, if

a dialog box calls MessageBox ,
the dialog keyboard shortcuts shouldn’t be active while the

message box
is displayed.
It would be very strange if hitting Enter caused the
dialog box to

invoke its default button
while the modal message box is still on the screen.
The result would

most likely be
a dialog box without underlying support,
which leads to unhappiness.

If there is some sort of message processing you want to happen
regardless of which message

loop is control,
then you can’t put it in your custom message loop because
(tautologically)

your custom message loop is not in control
when it is not running.
But message loops will call

DispatchMessage ,
and that will deliver the message to your window procedure.
(Of course,

the converse also applies:
If you want the behavior to be suspended when a modal operation

is in progress,
you can put it in your message loop.)

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2005/04/26/412116.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2005/02/23/378866.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

