
1/2

August 30, 2013

Can an x64 function repurpose parameter home space as
general scratch space?

devblogs.microsoft.com/oldnewthing/20130830-00

Raymond Chen

We saw some time ago that
the x64 calling convention in Windows
reserves space for the

register parameters on the stack,
in case the called function wants to spill them.
But can the

called function use the memory for other purposes, too?

You sort of already know the answer to this question.
Consider this function:

void testfunction(int a)

{

a = 42;

}

How would a naïve compiler generate code for this function?

testfunction:

 sub rsp, 8 ;; realign the stack

 ;; spill all register parameters into home locations

 mov [rsp+0x10], rcx

 mov [rsp+0x18], rdx

 mov [rsp+0x20], r8

 mov [rsp+0x28], r9

 ;; a = 42

 mov [rsp+0x10], 42

 ;; return

 add rsp, 8 ;; clean up local frame

 ret

Observe that after spilling the register parameters into their
home locations onto the stack,

the function modified the local variable,
which updated the value in the home location.

Since a function can arbitrarily modify a parameter,
you can see that a function is therefore

allowed to arbitrarily
modify a parameter’s home location.
At which point you can see that an

optimizing compiler might
choose an arbitrary value completely unrelated to the parameter.

Our test function has only one parameter.
What about the other three home registers?

https://devblogs.microsoft.com/oldnewthing/20130830-00/?p=3363
http://blogs.msdn.com/b/oldnewthing/archive/2004/01/14/58579.aspx

2/2

The caller is responsible for allocating space for parameters to the callee,
and
must always
allocate sufficient space for the 4 register parameters,
even if the callee doesn’t have that many
parameters.

A function can therefore treat those 32 bytes as
bonus free play.
The rationale behind those

32 bytes is that it gives you a place
to spill your inbound register
parameters so that they will

be adjacent to the
stack-based parameters.
(We saw how the naïve compiler took advantage

of this by
not trying to be clever in its function prologue and simply
spilling all register

parameters whether it needs them or not.)

Nevertheless, you are free to use them for whatever purpose you like,
and if you’re looking at

heavily-optimized code,
you’ll probably find that the compiler found all sorts of clever
things

it can do with them.
For example, a common trick is to use them to save the nonvolatile

registers that the function locally uses to hold the corresponding
parameter!

(Did this article look familiar?
Turns out
I covered this article a few years ago,
but I’m senile

and accidentally repeated a topic.
And since I put so much effort into writing it,
I’m going to

make you suffer through it,
even though it’s a repeat.
Hey, television programs repeat during

the summer.)

Raymond Chen

Follow

http://msdn.microsoft.com/library/ms235286.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/03/02/10135747.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

