
1/3

August 16, 2013

If I signal an auto-reset event and there is a thread
waiting on it, is it guaranteed that the event will be reset
and the waiting thread released before SetEvent returns?

devblogs.microsoft.com/oldnewthing/20130816-00

Raymond Chen

Let’s go straight to the question:

I have two programs that take turns doing something.
Right now, I manage the hand-off with
two auto-reset events.
In Thread A,
after it finishes doing some work, it
signals Event B and
then immediately waits on
Event A.
Thread B does the converse:
When its wait on Event B
completes, it does some work,
then signals Event A and then immediately waits
on Event B.

This works great, but I’m wondering if I can save myself
an event and use the same event to
hand control back and forth.
Is it guaranteed that when Thread A signals Event B,
that this will
release Thread B and reset the event
(since it is auto-reset) before the call to
 SetEvent
returns?
If so, then I can just have one event and use it to bounce
control back and forth.

Let’s try it!

https://devblogs.microsoft.com/oldnewthing/20130816-00/?p=3483

2/3

#include <windows.h>

#include <stdio.h>

HANDLE h;

DWORD CALLBACK ThreadProc(void *msg)

{

for (;;) {

 SetEvent(h);

 // The theory is that the above SetEvent does not return

 // until the other thread has positively completed its wait,

 // so this upcoming wait will not complete until the other

 // thread calls SetEvent.

 WaitForSingleObject(h, INFINITE);

 puts((LPSTR)msg);

}
}

int __cdecl main(int, char**)

{

DWORD id;

h = CreateEvent(0, FALSE, TRUE, 0);

CloseHandle(CreateThread(0, 0, ThreadProc, "T1", 0, &id));

CloseHandle(CreateThread(0, 0, ThreadProc, "T2", 0, &id));

Sleep(INFINITE);

return 0;

}

If you run this program,
you’ll see that the two threads come nowhere near taking turns.

Instead, you see stretches where
thread T1 gets to run a whole bunch of iterations
in a row,

and stretches where
thread T2 gets to run a whole bunch of iterations in a row.

Okay, so we have demonstrated by experiment that this technique
does not work.
(You can

use experimentation to show that something doesn’t always work,
but you can’t use it to

show that something always will work.
For that you need to read some contracts and put on

your thinking
cap.)
But why doesn’t it work?

The lawyerly explanation for why it doesn’t work is that there
is nothing in the contract that

says that it does work.
Perfectly correct, but not particularly insightful.

Signaling an event makes all waiting threads eligible to run,
but that doesn’t mean that they

actually will run.
One of the waiting threads is woken to say
“Hey, now’s your chance.”
But

that thread might be groggy and slow to wake,
and in the meantime, another thread can

swoop in and steal the event signal.
And then that groggy thread shuffles downstairs to the

breakfast
table to find that somebody ate his pancake.
(Actually, in principle, the kernel could

just make it a total free-for-all
and wake all the waiting threads, but I suspect it just picks

one.)

We saw earlier that the thread that you would expect to run next
might be temporarily

unavailable and miss its chance to claim
what it thinks is rightfully his.
And more recent

versions of Windows have exacerbated the problem
by
abandoning fairness
in order to

http://blogs.msdn.com/b/oldnewthing/archive/2005/01/05/346888.aspx
http://www.bluebytesoftware.com/blog/PermaLink,guid,e40c2675-43a3-410f-8f85-616ef7b031aa.aspx

3/3

improve throughput
and avoid lock convoys.
Now, in principle, the kernel could have reset

the event when it woke
the waiting thread, thereby assigning the wake to the thread at signal

time,
but that would have reintroduced the problem that unfairness was trying to
solve.

The irony here is that what you’re doing here is
intentionally trying to create a convoy,
and

you’re running into the scheduler’s convoy-resistance.

Just use the two-event pattern.
That makes it explicit what you want.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

