
1/5

August 14, 2013

What's the point of letting you change the
GCL_CBCLSEXTRA if it has no effect?

devblogs.microsoft.com/oldnewthing/20130814-00

Raymond Chen

The documentation for
the SetClassLongPtr function
mentions

GCL_CBCLSEXTRA:
Sets the size, in bytes, of the extra memory associated with the class.
Setting this value does not change the number of extra bytes already allocated.

What’s the point of letting the application change a value if it
has no effect?

The GCL_CBCLSEXTRA
class long grants access to the
 cbClsExtra value that was originally

passed in the
 WNDCLASS
structure when you called
 RegisterClass ,
or the Ex-versions

mutatus mutandis.
The intent is for it to be used with
 GetClassLong so you can read
the

value back,
in case you forgot,
or if you are inspecting somebody else’s class
(for example,

because you want to superclass it,
although GetClassInfo is probably
a better choice).
But

since
 GetClassLong and
 SetClassLong take the
same class index parameter,
once it’s

defined for one, it’s defined for the other.

Okay, well, first, let’s explain why it has no effect:
The class has already been created.
The

cbClsExtra tells the window manager
how much extra memory to allocate in the class

when it is created.
After the class is created, the value isn’t really used any more,
but

Windows hangs on to the value since it needs to report the
value when you call
 GetClass‐

Info .
Trying to change the value is like
making changes to a blueprint after the building has

finished construction.
The blueprints are still on file at the planning office,
but changing

them has no effect on the building.
(Though it will
mislead the fire chief who is studying the

blueprints
in order to
decide how to put out the fire that is raging on one
of your upper

floors.)

Okay, so why does Windows let you change the values if they
have no effect?

Let’s look at the values of those class longs:

https://devblogs.microsoft.com/oldnewthing/20130814-00/?p=3503
http://msdn.microsoft.com/library/ms633589
http://www.codinghorror.com/blog/2009/02/are-you-an-expert.html

2/5

#define GCL_MENUNAME (-8)

#define GCL_HBRBACKGROUND (-10)

#define GCL_HCURSOR (-12)

#define GCL_HICON (-14)

#define GCL_HMODULE (-16)

#define GCL_CBWNDEXTRA (-18)

#define GCL_CBCLSEXTRA (-20)

#define GCL_WNDPROC (-24)

How very strange.
They’re all even numbers,
and negative, too.
And the value -22 is

skipped,
which lies between
 GCL_CBCLSEXTRA
and
 GCL_WNDPROC .

Let’s look at what the values were in 16-bit Windows:

#define GCL_MENUNAME (-8)

#define GCW_HBRBACKGROUND (-10)

#define GCW_HCURSOR (-12)

#define GCW_HICON (-14)

#define GCW_HMODULE (-16)

#define GCW_CBWNDEXTRA (-18)

#define GCW_CBCLSEXTRA (-20)

#define GCL_WNDPROC (-24)

#define GCW_STYLE (-26)

Okay, now it looks even more suspicious.
All of the special class values were words
(as

indicated by the W in GCW),
except for two longs (GCL),
and the gap exactly falls right

where a long would go.

You’ve probably figured it out by now.
In 16-bit Windows, the internal CLASS
structure

looked like this:

typedef struct tagCLASS

{

 ... blah blah blah ...

 UINT style; // offset -26 from extraBytes

 WNDPROC lpfnWndProc; // offset -24 from extraBytes

 int cbClsExtra; // offset -20 from extraBytes

 int cbWndExtra; // offset -18 from extraBytes

 HMODULE hModule; // offset -16 from extraBytes

 HICON hIcon; // offset -14 from extraBytes

 HCURSOR hCursor; // offset -12 from extraBytes

 HBRUSH hbrBackground; // offset -10 from extraBytes

 LPSTR lpszMenuName; // offset -8 from extraBytes

 LPSTR lpszClassName; // offset -4 from extraBytes

 BYTE extraBytes[1]; // offset 0 (extra bytes start here)

}

CLASS;

http://blogs.msdn.com/b/oldnewthing/archive/2008/03/27/8338530.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/08/26/220873.aspx

3/5

When a class was created, the class extra bytes were appended
directly to the CLASS

structure, which meant that
you could use negative offsets to access the internal class

structures.

WORD GetClassWord(HWND hwnd, int index)

{

 CLASS *pcls = GetWindowClassPointer(hwnd);

 WORD *pw = (WORD*)&pcls->cls_extraBytes[index];

 return *pw;

}

LONG GetClassLong(HWND hwnd, int index)

{

 CLASS *pcls = GetWindowClassPointer(hwnd);

 LONG *pl = (LONG*)&pcls->cls_extraBytes[index];

 return *pl;

}

WORD SetClassWord(HWND hwnd, int index, WORD wNewValue)

{

 CLASS *pcls = GetWindowClassPointer(hwnd);

 WORD *pw = (WORD*)&pcls->cls_extraBytes[index];

 WORD wPrevValue = *pw;

 *pw = wNewValue;

 return wPrevValue;

}

LONG SetClassLong(HWND hwnd, int index, LONG lNewValue)

{

 CLASS *pcls = GetWindowClassPointer(hwnd);

 LONG *pl = (LONG*)&pcls->cls_extraBytes[index];

 LONG lPrevValue = *pl;

 *pl = lNewValue;

 return lPrevValue;

}

Except of course that the original code was written in
assembly language, so it was more like

4/5

FindClassExtraBytes proc

 mov bx, [bp][2][4] ;; caller's hwnd

 mov bx, [bx].wnd_pcls ;; get the class for the window

 add bx, cls_extraBytes ;; move to extra bytes

 add bx, [bp][2][4][2] ;; pointer to the requested bytes

 ret

;; use helper macros from cmacros.inc

cProc GetClassWord, <FAR, PUBLIC>

ParmW hwnd

ParmW index

cBegin

 call FindClassExtraBytes

 mov ax, [bx] ;; get the word

cEnd

cProc GetClassLong, <FAR, PUBLIC>

ParmW hwnd

ParmW index

cBegin

 call FindClassExtraBytes

 mov ax, [bx] ;; get the low word

 mov dx, [bx][2] ;; get the high word

cEnd

cProc SetClassWord, <FAR, PUBLIC>

ParmW hwnd

ParmW index

ParmW newValue

cBegin

 call FindClassExtraBytes

 mov ax, newValue

 xchg ax, [bx] ;; exchange value

cEnd

cProc SetClassLong, <FAR, PUBLIC>

ParmW hwnd

ParmW index

ParDL newValue

cBegin

 call FindClassExtraBytes

 mov ax, newValue[0] ;; low word

 mov dx, newValue[2] ;; high word

 xchg ax, [bx][0] ;; exchange low word

 xchg dx, [bx][2] ;; exchange high word

cEnd

In other words, the negative offsets were exactly the values
needed to access the

corresponding fixed fields in the
 CLASS structure as if they were extra bytes.
(Again, I

marvel at how 16-bit Windows
managed to accomplish
what it did in so little code.
The actual

code was even tighter than this.)

There were programs that said,
“Hey, since I know I can change this value all I want,
and it

won’t have any effect,
I can use it as a secret hiding place,”
and instead of storing data in a

more sane location,
they just squirreled it away in the
 GCL_CBCLSEXTRA .

http://blogs.msdn.com/b/oldnewthing/archive/2006/08/09/693280.aspx

5/5

Windows blocked changes to
 GCL_CBCLSEXTRA starting in
Windows 95,
but a compatibility

loophole was created
so that 16-bit programs written for older versions of Windows
could

still get the old behavior where they could modify
a value that had no effect,
just so that they

could use it as a secret hiding place.

But for all 32-bit programs and newer 16-bit programs,
attempting to modify the
 cbCls‐

Extra value will fail with
 ERROR_INVALID_PARAMETER .

Bonus chatter:
Another secret hiding place that applications discovered
was storing data in

the
window extended style bits,
 dwExStyle .
“Thanks, Windows, for adding four more bytes

of data to
each window.
I’ll use it to store a pointer!
(I’m sure Windows won’t mind.)”
There

is code in the window manager to enforce the rule
that you must use SetWindowPos to

change the
 WS_EX_TOPMOST style
rather than calling
 SetWindowLong ,
but there is a

compatibility loophole:
If your application was written for Windows 3.1
and you are setting

extended styles that didn’t exist
in Windows 3.1,
then the window manager says,
“I think I

know what you’re up to”
and suspends the rules so that the application can go ahead
and use

the extended window style as a secret hiding place.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

