
1/2

August 12, 2013

How do I convert a synchronous file handle into an
asynchronous one?

devblogs.microsoft.com/oldnewthing/20130812-00

Raymond Chen

Say you opened a file in synchronous mode,
and then you realize that you want to issue

asynchronous I/O on it, too.
One way to do this is to call
 CreateFile a second time with

the
 FILE_FLAG_OVERLAPPED ,
but this requires you to know the file name,
and the file name

may not be readily available to the function that
wants to do the conversion,
or it may not

even be valid any longer if the file has
been renamed in the meantime.

Enter ReOpenFile .
This basically lets you do a CreateFile
based on another handle

rather than a file name.
It differs from DuplicateHandle because
it actually goes and

opens the file again
(as opposed to merely creating another reference to the same
file object

in the kernel).
This means that you have the opportunity to choose new
handle attributes,

like whether you want the handle
to be synchronous or asynchronous.

https://devblogs.microsoft.com/oldnewthing/20130812-00/?p=3533

2/2

#include <windows.h>

#include <stdio.h>

int __cdecl main(int, char **)

{

HANDLE h = CreateFile("test", GENERIC_WRITE, FILE_SHARE_READ, NULL,

 CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

HANDLE h2 = ReOpenFile(h, GENERIC_READ, FILE_SHARE_READ |

 FILE_SHARE_WRITE, FILE_FLAG_OVERLAPPED);

DWORD cbResult;

WriteFile(h, "!", 1, &cbResult, NULL);

OVERLAPPED o = { 0 };

o.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

char ch = 0;

BOOL fRc = ReadFile(h2, &ch, 1, &cbResult, &o);

if (fRc) {

 printf("read completed synchronously\n");

} else if (GetLastError() == ERROR_IO_PENDING) {

 printf("read proceeding asynchronously\n");

} else {

 printf("read failed\n");

}
GetOverlappedResult(h2, &o, &cbResult, TRUE);

printf("Result was %c\n", ch);

CloseHandle(o.hEvent);

CloseHandle(h2);

CloseHandle(h);

return 0;

}

The program opens a test file for writing,
and then uses the
 ReOpenFile function to open

the same file
for reading.
(Since you are opening the file twice,
be careful to choose

compatible sharing modes.)
We synchronously write an exclamation point to the file via the

first handle,
and then we asynchronously read it back with the second handle.

It’s really not that exciting.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

