
1/2

August 9, 2013

Why does the CLR report a NullReferenceException even
if the referenced access is not exactly the null pointer?

devblogs.microsoft.com/oldnewthing/20130809-00

Raymond Chen

We saw some time ago that before invoking a method on an object,
the CLR will generate a

cmp [ecx], ecx instruction
to force a null reference exception to be raised if you are trying

to invoke a method on a null reference.

But why does the CLR raise a
 NullReferenceException if the faulting address
is almost

but not quite zero?

class Program {

public static unsafe void Main() {

 byte *addr = (byte*)0x42;

 byte val = *addr;

}
}

When run, this program raises a
 NullReferenceException rather than
an
 Access‐

ViolationException .
On the other hand, if you change the address to
 0x80000000 ,
then

you get the expected
 AccessViolationException .

With a little bit of preparation,
the CLR optimizes out null pointer checks if it knows that
it’s

going to access the object anyway.
For example, if you write

class Something {

int a, b, c;

static int Test(Something s) { return s.c; }

}

then the CLR doesn’t need to perform a null pointer test
against s before trying to read c ,

because the act of reading c will raise an exception
if s is a null reference.

On the other hand, the offset of c within
 s
is probably not going to be zero,
so when the

exception is raised by the CPU,
the faulting address is not going to be exactly zero
but rather

some small number.

https://devblogs.microsoft.com/oldnewthing/20130809-00/?p=3553
http://blogs.msdn.com/b/oldnewthing/archive/2007/08/16/4407029.aspx

2/2

The CLR therefore assumes that all exceptions at addresses close to
the null pointer were the

result of trying to access a field relative
to a null reference.
Once you also ensure that the first

64KB
of memory is always invalid,
this assumption allows the null pointer check

optimization.

Of course, if you start messing with unmanaged code or unsafe code,
then you can trigger

access violations near the null pointer that
are not the result of null references.
That’s what

happens when you operate outside the rules of the
managed memory environment.

Mind you, version 1 of the .NET Framework didn’t even have an
 AccessViolation‐

Exception .
In purely managed code, all references are either valid or null,
so version 1 of

the .NET Framework assumed that any access violation was
the result of a null reference.

There’s even
a configuration option you can set
to force newer versions of the .NET

Framework to treat all access
violations as null reference exceptions.

Exercise:
Respond to the following statement:
“Consider a really large class (more than

64KB),
and I access a field near the end of the class.
In that case, the null pointer

optimization won’t work
because the access will be outside the 64KB range.
Aha, I have

found a flaw in your design!”

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2009/06/11/9725386.aspx
http://msdn.microsoft.com/en-us/library/system.accessviolationexception.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

