
1/2

August 5, 2013

Why does BitConverter.LittleEndian return false on my
x86 machine?

devblogs.microsoft.com/oldnewthing/20130805-00

Raymond Chen

Welcome to CLR Week 2013,
returned from its
two-year hiatus.

A customer reported that when they checked with the debugger,
 BitConverter.Little‐

Endian
reported false
even though they were running on an x86 machine,
which is a

little-endian architecture.

ushort foo = 65280;

65280

BitConverter.IsLittleEndian

false

BitConverter.GetBytes(foo)

{byte[2]}

[0]: 0

[1]: 255

The bytes are extracted in little-endian order,
despite the claim that the machine is big-

endian.
“I don’t get it.”

I didn’t know the answer,
but I knew how to use a search engine,
and a simple search quickly

found
this explanation:

Reading a member from the debugger merely reads the value of the member
from memory.

That simple statement hides the answer by saying what happens
and leaving you to figure out

what doesn’t happen.
Here’s what doesn’t happen:
Reading a member from the debugger

does not execute the code to initialize that member.

In the case of
 BitConverter ,
the LittleEndian member
is initialized by the static

constructor.
But when are static constructors run?
For C#, static constructors are run
before

the first instance is created or any static members are referenced.
Therefore, if you never

create any BitConverter objects
(which you can’t since it is a static-only class),
and if you

https://devblogs.microsoft.com/oldnewthing/20130805-00/?p=3623
http://blogs.msdn.com/b/oldnewthing/archive/2012/07/30/10334554.aspx
http://stackoverflow.com/q/2023672/
http://msdn.microsoft.com/en-us/library/k9x6w0hc%28v=vs.80%29.aspx

2/2

never access any static members,
then its static constructor is not guaranteed to have run,

and consequently
anything that is initialized by the static constructor
is not guaranteed to

have been initialized.

And then when you go looking at in the debugger,
you see the uninitialized value.

Why doesn’t the debugger execute static constructors
before dumping a value from memory?

Probably because the debugger wants to avoid surprises.
It would be weird if you tried to

dump a value from the debugger
and the program resumed execution!

Now, when you ask the debugger to evaluate
 BitConverter.GetBytes(foo) ,
the debugger

has no choice but to execute application code,
but that’s okay because you explicitly told it to.

But let’s continue that debugging session:

ushort foo = 65280;

65280

BitConverter.IsLittleEndian

false

BitConverter.GetBytes(foo)

{byte[2]}

[0]: 0

[1]: 255

BitConverter.IsLittleEndian

true ← hey look

Your call to
 BitConverter.GetBytes(foo)
caused code to execute,
and then the CLR said,

“Okay, but before I call this member function, I am required
to run the static constructor,

because those are the rules,”
and that resulted in the Is­:LittleEndian
field being

initialized to true .

The customer replied,
“Thanks.
The trick was finding the correct search terms.”

I didn’t think my choice of search terms was particularly
devious.
I simply searched for
bit-

converter.islittleendian false.

Bonus reading:
The byte order fallacy by
Rob Pike.
“Whenever I see code that asks what

the native byte order is,
it’s almost certain the code is either wrong or misguided.”

Raymond Chen

Follow

http://www.bing.com/search?q=bitconverter.islittleendian+false
http://commandcenter.blogspot.com/2012/04/byte-order-fallacy.html
http://en.wikipedia.org/wiki/Rob_Pike
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

