
1/3

July 12, 2013

If you want to track whether the current thread owns a
critical section, you can use the critical section itself to
protect it

devblogs.microsoft.com/oldnewthing/20130712-00

Raymond Chen

You may find yourself in the situation where you want to keep
track of the owner of a critical

section.
This is usually for debugging or diagnostic purposes.
For example,
a particular

function may have as a prerequisite that a particular
critical section is held,
and you want to

assert this so that you can catch the problem
when running the debug build.

https://devblogs.microsoft.com/oldnewthing/20130712-00/?p=3823

2/3

class CriticalSectionWithOwner

{

public:

 CriticalSectionWithOwner() : m_Owner(0), m_EntryCount(0)

 {

 InitializeCriticalSection(&m_cs);

 }

 ~CriticalSectionWithOwner()

 {

 DeleteCriticalSection(&m_cs);

 }

 void Enter()

 {

 EnterCriticalSection(&m_cs);

#ifdef DEBUG

 m_Owner = GetCurrentThreadId();

 m_EntryCount++;

#endif

 }

 void Leave()

 {

#ifdef DEBUG

 if (--m_EntryCount == 0) {

 m_Owner = 0;

 }

#endif

 LeaveCriticalSection(&m_cs);

 }

#ifdef DEBUG

 bool IsHeldByCurrentThread()

 {

 return m_EntryCount &&

 m_Owner == GetCurrentThreadId();

 }

#endif

private:

 CRITICAL_SECTION m_cs;

#ifdef DEBUG

 DWORD m_Owner;

 int m_EntryCount;

#endif

};

After we successfully enter the critical section,
we mark the current thread as the owner and

increment the
entry count.
Before leaving the critical section, we see if this is the last exit,

and if so, we clear the owner field.

Note that we update the owner and entry count while the critical
section is held.
We are using

the critical section to protect its own diagnostic data.

The subtle part is the
 IsHeldByCurrentThread function.
Let’s look at the cases:

3/3

First, if the current thread is the owner of the critical section,
then we know that the

diagnostic data is safe to access
because we own the critical section that protects it.
That’s not

the subtle part.

The subtle part is the case where the current thread is not
the owner of the critical section.
A

naïve analysis would say that the diagnostic data is off limits
because you are trying to access

it without owning the protective
critical section.
But what value can
 m_Owner have at this

point?

1. If the critical section is not held, then
 m_Owner will be zero, which will be unequal to

the
current thread ID.

2. If the critical section is held, then
 m_Owner will be the owner of the critical section,

which will also be unequal to the current thread ID.

But what if the value of m_Owner changes while we
are looking at it?
Well, since we are not

the owner of the critical section,
it can only change between the two states above
(possibly

from one state 2 to another state 2).
In other words, it can only change from one value that is

not
equal to the current thread ID
to another value that is still not equal to the current
thread

ID.
Therefore, even if we race against another thread entering or
leaving the critical section,

the fact that the owner of the critical section is not us
doesn’t change.

Note that this analysis assumes that the m_Owner
is a suitably-aligned value that can be

updated atomically.
(If not, then it’s possible that a torn value will be read
which

coincidentally matches our thread ID.)

Since the CRITICAL_SECTION itself must already
be suitably aligned,
placing the DWORD up

against it will also align
the DWORD .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

