
1/2

July 5, 2013

It rather involved being on the other side of this airtight
hatchway: Disabling Safe DLL searching

devblogs.microsoft.com/oldnewthing/20130705-00

Raymond Chen

The
Microsoft Vulnerability Research
team discovered a potential
current directory attack
in

a third party program.
The vendor, however, turned around and forwarded the report
to the

Microsoft Security Response Center:

Our investigation suggests that this issue is due to a bug
in Microsoft system DLLs rather than
our program.
When a process is launched,
for example, when the user double-clicks the icon in
Explorer,
a new process object is created, and the DLLs are loaded
by a component known as
the Loader.
The Loader locates the DLLs,
maps them into memory,
and then calls the DllMain
function for each of the modules.
It appears that some Microsoft DLLs obtain DLLs from the
current directory and are therefore susceptible to a current
directory attack.
We created a simple
Win32 application which demonstrates the issue:

#include <windows.h>

int __cdecl main(int argc, char **argv)

{

return MessageBox(NULL, "Test", "Test", MB_OK);

}

If you place a fake copy of DWMAPI.DLL
in the same directory as the application,
then the
Loader will use that fake copy instead of the system one.

This technique can be used to attack many popular programs.
For example, placing a fake copy
of
 DWMAPI.DLL in the
 C:\Program Files\Internet Explorer directory
allows it to
be injected into Internet Explorer.
Placing the file in the
 C:\Program
Files\Adobe\Reader 9.0\Reader directory
allows it to be injected into Adobe Reader.

(I like how the report
begins with some exposition.)

The vendor appears to have confused two directories,
the current directory and the

application directory.
They start out talking about a current directory attack,
but when the

money sentence arrives,
they talk about placing the rogue DLL
“in the same directory as the

https://devblogs.microsoft.com/oldnewthing/20130705-00/?p=3883
http://www.microsoft.com/security/msrc/collaboration/research.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/11/11/10089223.aspx
http://www.microsoft.com/security/msrc/default.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2009/04/09/9539191.aspx

2/2

application,”
which makes this not a current directory attack
but an application directory

attack.

We saw some time ago that
the directory is the application bundle,
and the application

bundle can override DLLs in the system directory.
Again, this is just another illustration of

the importance of
securing your application directory.

The specific attacks listed at the end of the report
require writing into
 C:\Program Files ,

but in order to drop your rogue DWMAPI.DLL file
into that directory,
you need to have

administrative privileges in the first place.

In other words, in order to attack the system,
you first need to get on the other side of the

airtight hatchway.

There was one final attempt to salvage this bogus vulnerability report:

We can also reproduce the problem without requiring write access
to the Program Files
directory
by disabling
Safe DLL searching.

Nice try.
In order to disable Safe DLL searching,
you need to have administrator privileges,

so you’re already on the other side of the airtight hatchway.
And if you elevate to

administrator
and disable safe DLL searching,
then is it any surprise that you have unsafe

DLL searching?
This is just another case of
If you set up an insecure system, don’t be

surprised that there’s
a security vulnerability.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2011/06/20/10176772.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2012/10/31/10364271.aspx
http://msdn.microsoft.com/library/ms682586
http://blogs.msdn.com/b/oldnewthing/archive/2010/01/14/9948124.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

