
1/2

July 3, 2013

Why don't elevated processes inherit their environment
variables from their non-elevated parent?

devblogs.microsoft.com/oldnewthing/20130703-00

Raymond Chen

As a general rule, child processes inherit the environment of their parent. But if the parent is

non-elevated and the child is elevated, then this inheritance does not happen. Why not?

There are two answers to this question. For the kernel-color glasses answer, I defer to Chris

Jackson, the App Compat Guy. It’s interesting to see how it all works, but it doesn’t explain

why the mechanism was designed to block environment variable inheritance.
The reason for

the design is that allowing an elevated process to inherit the PATH from a non-elevated

process creates an attack vector.
The non-elevated process sets its PATH to put some

attacker-controlled directories ahead of the directories the elevated application actually

expects. For example, suppose the elevated application links to C:\Program Files\Common

Files\Contoso\ContosoGridControl.dll . It arranges for this by setting the system

PATH to include the C:\Program Files\Common Files\Contoso directory. Or maybe the

program calls LoadLibrary on a DLL that might not exist, and it handles the case that the

call fails by disabling some optional feature. (Whether this is a good idea or not is beside the

point.)
The attacker changes the PATH to read \\rogue\server;C:\Program

Files\Common Files\Contoso , so that the library search finds the evil copy on the rogue

server before finding the expected version in the Common Files directory (or in the case of

a DLL that may not exist, it finds the evil copy on the rogue server instead of failing outright).

Bingo, the attacker has injected arbitrary code into an elevated process. Game over.
For

similar reasons, the current directory is reset to the system directory when a non-elevated

program launches an elevated program.
If the environment and current directory were

inherited, then malware could ask to elevate Program X with a custom current directory or

environment. The user will merely be asked if they want to run Program X elevated, unaware

that it is being run in a nonstandard manner, using an execution environment that did not

receive administrator approval. As a result, the malware would be able to sneak into the

administrator account under sheep’s clothing (the sheep being Program X).
What if you want

to run another program elevated, and with a custom current directory or environment?

Write a wrapper program which sets the current directory and environment, then launches

the desired target process. Then ask the user for permission to run the wrapper elevated.

https://devblogs.microsoft.com/oldnewthing/20130703-00/?p=3903
http://blogs.msdn.com/b/cjacks/archive/2008/10/29/why-don-t-elevated-applications-receive-environment-variables-set-by-non-elevated-calling-process.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2007/12/11/6648397.aspx

2/2

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

