
1/2

June 26, 2013

The default error mode (SetErrorMode) is not zero
devblogs.microsoft.com/oldnewthing/20130626-00

Raymond Chen

A customer put the following code at the start of their program:

// If this assertion fires, then somebody else changed the error mode

// and I just overwrote it with my error mode.

ASSERT(SetErrorMode(SEM_FAILCRITICALERRORS) == 0);

The customer wanted to know whether it was a valid assumption
that the initial error mode

for a process is zero.

No it is not, and this is called out in the documentation for
SetErrorMode:

Remarks

Each process has an associated error mode that indicates
to the system how the application is
going to respond to serious errors.
A child process inherits the error mode of its parent process.

The assumption that the initial error mode is zero is therefore false.

There’s another error in the above code:
The call to
 SetErrorMode is placed inside an

assertion.
This means that in the retail build, the call disappears.
The debug build has the

error mode set to
 SEM_FAILCRITICALERRORS ,
but the retail build has the default error

mode.
They are
changing the semantics in the debug build,
and are headed down the slippery

slope that leads to them being forced
to deploy the debug version of the program into

production
because that’s the only build that works.

Unfortunately, they may have already reached that point,
because the customer asked,
“Is it

possible for the user to set the default error
code to something other than zero,
in which case

this assertion would crash the client?”
(Emphasis mine.)

Bonus chatter:
Note that you can override error mode inheritance
by passing the

CREATE_DEFAULT_ERROR_MODE
flag to the CreateProcess function.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20130626-00/?p=3983
http://msdn.microsoft.com/library/ms680621
http://blogs.msdn.com/b/oldnewthing/archive/2006/08/15/701130.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

2/2

