
1/7

June 21, 2013

Of what use is the RDW_INTERNALPAINT flag?
devblogs.microsoft.com/oldnewthing/20130621-00

Raymond Chen

For motivational purposes, let’s start with
a program that displays a DWM thumbnail.

Start with
the scratch program
and add the following:

#include <dwmapi.h>

HWND g_hwndThumbnail;

HTHUMBNAIL g_hthumb;

void UpdateThumbnail(HWND hwndFrame, HWND hwndTarget)

{

if (g_hwndThumbnail != hwndTarget) {

 g_hwndThumbnail = hwndTarget;

 if (g_hthumb != nullptr) {

 DwmUnregisterThumbnail(g_hthumb);

 g_hthumb = nullptr;

 }

 if (hwndTarget != nullptr) {

 RECT rcClient;

 GetClientRect(hwndFrame, &rcClient);

 if (SUCCEEDED(DwmRegisterThumbnail(hwndFrame,

 g_hwndThumbnail, &g_hthumb))) {

 DWM_THUMBNAIL_PROPERTIES props = {};

 props.dwFlags = DWM_TNP_RECTDESTINATION | DWM_TNP_VISIBLE;

 props.rcDestination = rcClient;

 props.rcDestination.top += 50;

 props.fVisible = TRUE;

 DwmUpdateThumbnailProperties(g_hthumb, &props);

 }

 }

}
}

https://devblogs.microsoft.com/oldnewthing/20130621-00/?p=4023
http://blogs.msdn.com/b/oldnewthing/archive/2013/05/13/10417964.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2003/07/23/54576.aspx

2/7

The UpdateThumbnail
function positions a thumbnail of the target window
inside the

frame window.
There’s a small optimization in the case that the
target window is the same

one that the thumbnail
is already viewing.
Overall, no big deal.

void

OnDestroy(HWND hwnd)

{

UpdateThumbnail(hwnd, nullptr);

PostQuitMessage(0);

}

When our window is destroyed, we need to clean up the thumbnail,
which we do by updating

it to a null pointer.

For the purpose of illustration,
let’s say that pressing the 1 key changes
the thumbnail to a

randomly-selected window.

3/7

struct RANDOMWINDOWINFO

{

HWND hwnd;

int cWindows;

};

BOOL CALLBACK RandomEnumProc(HWND hwnd, LPARAM lParam)

{

if (hwnd != g_hwndThumbnail &&

 IsWindowVisible(hwnd) &&

 (GetWindowStyle(hwnd) & WS_CAPTION) == WS_CAPTION) {

 auto prwi = reinterpret_cast<RANDOMWINDOWINFO *>(lParam);

 prwi->cWindows++;

 if (rand() % prwi->cWindows == 0) {

 prwi->hwnd = hwnd;

 }

}
return TRUE;

}

void ChooseRandomWindow(HWND hwndFrame)

{

RANDOMWINDOWINFO rwi = {};

EnumWindows(RandomEnumProc, reinterpret_cast<LPARAM>(&rwi));

UpdateThumbnail(hwndFrame, rwi.hwnd);

}

void OnChar(HWND hwnd, TCHAR ch, int cRepeat)

{

switch (ch) {

case TEXT(‘1’):

 ChooseRandomWindow(hwnd);

 break;

}
}

HANDLE_MESSAGE(hwnd, WM_CHAR, OnChar);

The random window selector selects among windows with
a caption which are visible and

which are not already
being shown in the thumbnail.
(That last bit is so that when you press

1 ,
it will always pick a different window.)

Run this program, and yippee, whenever you press the
 1 key, you get a new thumbnail.

4/7

Okay, but usually your program shows more than just a thumbnail.
It probably incorporates

the thumbnail into its other content,
so let’s draw some other content, too.
Say, a single-

character random message.

TCHAR g_chMessage = ‘?’;

void

PaintContent(HWND hwnd, PAINTSTRUCT *pps)

{

if (!IsRectEmpty(&pps->rcPaint)) {

 RECT rcClient;

 GetClientRect(hwnd, &rcClient);

 DrawText(pps->hdc, &g_chMessage, 1, &rcClient,

 DT_TOP | DT_CENTER);

}
}

void ChooseRandomMessage(HWND hwndFrame)

{

g_chMessage = rand() % 26 + TEXT(‘A’);

InvalidateRect(hwndFrame, nullptr, TRUE);

}

void OnChar(HWND hwnd, TCHAR ch, int cRepeat)

{

switch (ch) {

case TEXT(‘1’):

 ChooseRandomWindow(hwnd);

 break;

case TEXT(‘2’):

 ChooseRandomMessage(hwnd);

 break;

}
}

Now, if you press 2 ,
we change the random message.
There is a small optimiztion in

PaintContent that skips the rendering
if the paint rectangle is empty.
Again, no big deal.

Okay, but sometimes there are times where your program
wants to update the thumbnail and

the message
at the same time.
Like this:

http://blogs.msdn.com/b/oldnewthing/archive/2006/03/27/561924.aspx

5/7

void OnChar(HWND hwnd, TCHAR ch, int cRepeat)

{

switch (ch) {

case TEXT(‘1’):

 ChooseRandomWindow(hwnd);

 break;

case TEXT(‘2’):

 ChooseRandomMessage(hwnd);

 break;

case TEXT(‘3’):

 ChooseRandomWindow(hwnd);

 ChooseRandomMessage(hwnd);

 break;

}
}

Run this program and press 3
and watch the thumbnail and message change

simultaneously.

And now we have a problem.

You see, the
 ChooseRandomWindow function updates
the thumbnail immediately,
since the

thumbnail is presented by DWM,
whereas the
 ChooseRandomMessage function updates
the

message, but the new message doesn’t appear on the screen
until the next paint cycle.
This

means that there is a window of time where the new
thumbnail is on the screen, but you still

have the old message.
Since painting is a low-priority activity,
the window manager is going

to deliver other messages to your
window before it finally gets around to painting,
and the

visual mismatch between the thumbnail and the message can
last for quite some time.
(You

can exaggerate this in the sample program by inserting a
call to Sleep .)
What can we do to

get rid of this visual glitch?

One solution would be to delay updating the thumbnail
until the next paint cycle.
At the paint

cycle, we update the thumbnail and
render the new message.
Now both updates occur at the

same time,
and you get rid of the glitch.
To trigger a paint cycle, we can invalidate
a dummy

1×1 pixel in the window.

6/7

HWND g_hwndThumbnailWanted;

void

PaintContent(HWND hwnd, PAINTSTRUCT *pps)

{

UpdateThumbnail(hwnd, g_hwndThumbnailWanted);

if (!IsRectEmpty(&pps->rcPaint)) {

 RECT rcClient;

 GetClientRect(hwnd, &rcClient);

 DrawText(pps->hdc, &g_chMessage, 1, &rcClient,

 DT_TOP | DT_CENTER);

}
}

void ChooseRandomWindow(HWND hwndFrame)

{

RANDOMWINDOWINFO rwi = {};

EnumWindows(RandomEnumProc, reinterpret_cast(&rwi));

g_hwndThumbnailWanted = rwi.hwnd;

RECT rcDummy = { 0, 0, 1, 1 };

InvalidateRect(hwndFrame, &rcDummy, FALSE);

}

Now, when we want to change the thumbnail, we just
remember what thumbnail we want

(the “logical” current
thumbnail)
and invalidate a dummy pixel in our window.
The invalid

dummy pixel triggers a paint cycle,
and in our paint cycle, we call
 UpdateThumbnail to

synchronize
the logical current thumbnail with the physical
current thumbnail.
And then we

continue with our regular painting
(in case there is also painting to be done, too).

But it sure feels wasteful invalidating a pixel
and forcing the DrawText to occur
even

though we really didn’t update anything.
Wouldn’t it be great if we could just say,
“Could you

fire up a paint cycle for me,
even though there’s technically nothing to paint?
Because I

actually do have stuff to paint,
it’s just something outside your knowledge
since it is not

rendered by GDI.”

Enter the
 RDW_INTERNALPAINT flag.

If you pass the
 RDW_INTERNALPAINT flag
to RedrawWindow ,
that means,
“Set the ‘Yo,

there’s painting to be done!’ flag.
I know you think there’s no actual painting to be done,
but

trust me on this.”
(It’s
not actually a flag, but you can think of it that way.)

When the window manager then get around to deciding whether
there is any painting to be

done,
before it concludes,
“Nope, this window is all valid,”
it checks if you made a special

RDW_INTERNALPAINT request,
and if so, then it will generate
a dummy WM_PAINT message

http://blogs.msdn.com/b/oldnewthing/archive/2011/12/19/10249000.aspx

7/7

for you.

Using this new flag is simple:

g_hwndThumbnailWanted = rwi.hwnd;

// RECT rcDummy = { 0, 0, 1, 1 };

// InvalidateRect(hwndFrame, &rcDummy, FALSE);

RedrawWindow(hwndFrame, nullptr, nullptr,

 RDW_INTERNALPAINT);

Now, when the program wants to update its thumbnail,
it just schedules a fake-paint message

with the window manager.
These fake-paint messages coalesce with real-paint messages,
so if

you do an internal paint and an invalidation,
only one actual paint message will be generated.

If the paint message is a fake-paint message,
the rcPaint will be empty,
and you can test

for that in your
paint handler and skip your GDI painting.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

