
1/2

June 19, 2013

AttachThreadInput is like taking two threads and pooling
their money into a joint bank account, where both parties
need to be present in order to withdraw any money

devblogs.microsoft.com/oldnewthing/20130619-00

Raymond Chen

Consider this code:

// Code in italics is wrong

 foregroundThreadId = ::GetWindowThreadProcessId(::GetForegroundWindow(), 0);
 myThreadId = GetCurrentThreadId();

 if (foregroundThreadId != myThreadId)

 {

 AttachThreadInput(foregroundThreadId, myThreadId, TRUE);

 BringWindowToTop(myWindowHandle);

If you try to step over the
 AttachThreadInput
call in the debugger,
both the debugger and

the application being debugged will freeze.
Why is that?

This should look familiar because
it’s basically
the same code that I warned you about several

years ago.
The code grabs the current foreground window and attaches
its input state to the

current thread.
Now you’re in trouble.

Remember dual-signature bank accounts?
These were bank accounts that required the

signatures of both
account holders in order to make a withdrawal.
It can work out fine
if the

two parties trust each other with a shared bank account
and can coordinate their actions so

that when one of them needs money,
it can go to the other and say,
“Hey, can you sign this

withdrawal slip?
I need some money.”
(Another use case for dual-signature bank accounts

was a parent
wanting to monitor their child’s spending.)

AttachThreadInput
tells the window manager,
“Please take these two threads and put all

their money
in a dual-signature bank account.”

https://devblogs.microsoft.com/oldnewthing/20130619-00/?p=4043
http://blogs.msdn.com/b/oldnewthing/archive/2008/08/01/8795860.aspx

2/2

In the case above, the code said,
“See that random person being served by the bank teller?

Please take all my money and all his money and
put them into a dual-signature bank

account.”

As you can imagine, this is a bad idea,
both for you and for the other person.
You cannot

withdraw any money until you can somehow
track down that random person and get him to

sign the withdrawal form.
And it’s not like you have any relationship with that
person—you

don’t even know his name!—so the only chance
you have is to go down to the bank and hang

out there hoping that
the other guy will show up to make a withdrawal as part of his normal

course of business,
and then you can say,
“Hey, you there!
Sign this for me, will ya?”

The other person is in a similar predicament.
When he goes to the bank to make a

withdrawal, the teller will say,
“I’m sorry, sir, but your money is in a dual-signature account,

and your withdrawal slip has only one signature on it.”
He’s stuck doing the same thing that

you do:
Whenever he wants to withdraw money, he has to go to the bank
and hang around

hoping that you will show up eventually.

bank account ↔ input queue

money ↔ input

go to the bank ↔ check the message queue

In this case,
what happened was that the code grabbed the debugger and said,
“Okay, we now

have a dual-signature bank account!”
And now you’re stuck.
The debugger cannot withdraw

any money
because it is waiting for you to go to the bank.
But you can’t go to the bank

because you’re broken into the debugger.
Result: Nobody gets any money.

This is why you shouldn’t grab random people in the bank and unilaterally
create dual-

signature bank accounts with them.

Reminder:
Attaching input queues is not a Get Out of Jail Free card.
It’s a
Get Into the

Same Jail card.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2013/06/07/10424279.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

