
1/6

June 12, 2013

Dispatch interfaces as connection point interfaces
devblogs.microsoft.com/oldnewthing/20130612-00

Raymond Chen

Last time,
we learned about how connection points work.
One special case of this is where the

connection interface
is a dispatch interface.

Dispatch interfaces are, as the name suggests,
COM interfaces based on IDispatch .
The

IDispatch  interface is the base interface
for OLE automation objects,
and if you want your

connection point interface to be usable
from script,
you probably should make it a dispatch

interface.

I’m assuming you know how IDispatch  works.
The short version is that script that wants

to invoke
a method or property calls
 GetIDsOfNames  to get the
dispatch ID for the method

or property it wants
to access,
and it uses the type library to figure out
things like the

parameters and return value.
Once the scripting engine figures out how the method or

property
expects to be called,
it can call
 IDispatch::Invoke 
passing the dispatch ID and a

DISPPARAMS  structure
that holds the parameters.

Nowadays, this sort of thing goes by the fancy name of reflection,
but back in the OLE

Automation days,
it was simply all in a day’s work.
You kids think you invented everything.

Just like as with regular connection point interfaces,
a dispatch interface used as a

connection point interface
consists of events which are formally implemented as methods.

dispinterface DWidgetEvents

{

[id(WDISPID_RENAMED)]

HRESULT Renamed([in] BSTR oldName, [in] BSTR newName);

…

};

You declare that your object is a source of events for this interface
by noting it in your object

declaration.
(Thanks, Medinoc for
noting the error in the original version of this article.)

https://devblogs.microsoft.com/oldnewthing/20130612-00/?p=4103
http://blogs.msdn.com/b/oldnewthing/archive/2013/06/11/10424940.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2013/06/12/10425215.aspx#10425408


2/6

coclass Widget

{

[default] interface IWidget;

[default, source] dispinterface DWidgetEvents;

}


A client registers with the connection point with the
 DIID_DWidgetEvents  interface.
By

convention, dispatch interfaces usually end
with the word Events 
and are often prefixed

with the letter D ,
and the interface ID symbol begins with DIID 
rather than simply IID .

These conventions are not universally adhered-to,
so don’t freak out if you see people who

don’t follow them.
(If you declare your dispatch interface in an IDL file,
then the MIDL

compiler will
generate the dispatch interface ID with
the DIID  prefix for you.)

Now, formally, when the connection point wants to invoke
the Renamed  method, it calls

GetIDsOfNames  to get the ID
for the method called L”Renamed” , and asks
for the type

library to figure out what the parameters are.
But this is frequently just pointless busy-work:

The connection point often already knows the answer,
since the connection point already

knows what interface
it is talking to.
It doesn’t need to do any “reflection” since the

connection
point already knows what the IDs and calling conventions are.
In the same way,

your C# code doesn’t need to use reflection
to call a method on an object whose assembly you

already have
referenced in your project.
(The GetIDsOfNames  exists not for
connection

points, but rather to assist
dynamically-typed languages, where you can try to invoke any

method
on any object, and the method is looked up at run time.)

In other words, the connection point already knows that
the ID for the method Rename  is

WDISPID_RENAMED , and that it takes two
 BSTR  parameters,
because that was part of the

contract for registering with
the connection point in the first place.

This means that in practice, the only method on the
client that is ever called is

IDispatch::Invoke .

Here is a template base class that I use for my connection point interface
implementations of

dispatch interfaces.
We’ll discuss the pieces afterwards:



3/6

template<typename DispInterface>

class CDispInterfaceBase : public DispInterface

{

public:

CDispInterfaceBase() : m_cRef(1), m_dwCookie(0) { }

/* IUnknown */

IFACEMETHODIMP QueryInterface(REFIID riid, void **ppv)

{
 *ppv = nullptr;

 HRESULT hr = E_NOINTERFACE;

 if (riid == IID_IUnknown || riid == IID_IDispatch ||

     riid == __uuidof(DispInterface))

 {

  *ppv = static_cast<DispInterface *>

         (static_cast<IDispatch*>(this));

  AddRef();

  hr = S_OK;

 }

 return hr;

}

IFACEMETHODIMP_(ULONG) AddRef()

{
 return InterlockedIncrement(&m_cRef);

}

IFACEMETHODIMP_(ULONG) Release()

{
 LONG cRef = InterlockedDecrement(&m_cRef);

 if (cRef == 0) delete this;

 return cRef;

}

// *** IDispatch ***

IFACEMETHODIMP GetTypeInfoCount(UINT *pctinfo)

{
 *pctinfo = 0;

 return E_NOTIMPL;

}

IFACEMETHODIMP GetTypeInfo(UINT iTInfo, LCID lcid,

                           ITypeInfo **ppTInfo)

{
 *ppTInfo = nullptr;

 return E_NOTIMPL;

}



4/6

IFACEMETHODIMP GetIDsOfNames(REFIID, LPOLESTR *rgszNames,

                             UINT cNames, LCID lcid,

                             DISPID *rgDispId)

{
 return E_NOTIMPL;

}

IFACEMETHODIMP Invoke(

   DISPID dispid, REFIID riid, LCID lcid, WORD wFlags,

   DISPPARAMS *pdispparams, VARIANT *pvarResult,

   EXCEPINFO *pexcepinfo, UINT *puArgErr)

{
 if (pvarResult) VariantInit(pvarResult);

 return SimpleInvoke(dispid, pdispparams, pvarResult);

}

// Derived class must implement SimpleInvoke

virtual HRESULT SimpleInvoke(DISPID dispid,

   DISPPARAMS *pdispparams, VARIANT *pvarResult) = 0;

public:

HRESULT Connect(IUnknown *punk)

{
 HRESULT hr = S_OK;

 CComPtr<IConnectionPointContainer> spcpc;

 if (SUCCEEDED(hr)) {

  hr = punk->QueryInterface(IID_PPV_ARGS(&spcpc));

 }

 if (SUCCEEDED(hr)) {

 hr = spcpc->FindConnectionPoint(__uuidof(DispInterface), &m_spcp);

 }

 if (SUCCEEDED(hr)) {

 hr = m_spcp->Advise(this, &m_dwCookie);

 }

 return hr;

}

void Disconnect()

{
 if (m_dwCookie) {

  m_spcp->Unadvise(m_dwCookie);

  m_spcp.Release();

  m_dwCookie = 0;

 }

}



5/6

private:

LONG m_cRef;

CComPtr<IConnectionPoint> m_spcp;

DWORD m_dwCookie;

};

First, a distraction: Our QueryInterface 
implementation performs a double-cast of this

to IDispatch , then to the templated interface.
This ensures that the templated interface

pointer
and IDispatch  are compatible.
It would be bad if somebody tried to use this

QueryInterface  implementation
with something unrelated to IDispatch .
(Yes, I

could’ve used std::is_base_of ,
but I’m an old-timer who grew up before TR1.)

The bulk of the class merely stubs out all the methods
of IDispatch ,
save for

IDispatch::Invoke , which does a little
grunt work (initializing the result VARIANT )
and

then leaves the derived class to do the heavy lifting.

Finally, there are two public methods
 Connect  and Disconnect .
These perform the

Advise  and
 Unadvise  calls we saw yesterday.
To simplify things for our caller,
we save

the IConnectionPointer 
we registered against so that the caller doesn’t
have to pass it

back in when disconnecting.

Exercise:
Is the m_spcp.Release()  call
in Disconnect 
really necessary?
(Assuming that

Connect  is called at most once.)

This helper template class makes writing dispatch interface
connection point clients really

simple,
since all you have to do is implement SimpleInvoke 
in the form of a switch

statement on the
dispatch IDs you care about:

class CWidgetClient : public CDispInterfaceBase

{

public:

CWidgetClient() { }

HRESULT SimpleInvoke(

   DISPID dispid, DISPPARAMS *pdispparams, VARIANT *pvarResult)

{

switch (dispid) {

case WDISPID_RENAMED:

 HeyLookItGotRenamed(pdispparams->rgvarg[0].bstrVal,

                     pdispparams->rgvarg[1].bstrVal);

 break;

}
return S_OK;

};



6/6

In the SimpleInvoke  method,
we switch on the dispatch ID,
and if we see one we like, we

extract the parameters from the
 pdispparams .

Update: Commenter parkrrr
points out a huge gotcha with the
 DISPPARAMS  structure:
The

parameters are passed in reverse order.
I don’t know why.
They just are.

Next time, we’ll start hooking up events to our Little Program
so it can update when the user

navigates an Explorer or
Internet Explorer window.

Warning! Managed code!
The CLR
understands the connection point/dispatch interface

convention and exposes a dispatch event
to managed code
in the form of a CLR event and

corresponding delegate.
For example, our Renamed  event is
exposed as an event called

Renamed ,
with delegate type
 DWidgetEvents_RenamedEventHandler .
You can listen on

the event the way you listen
to any other CLR event:
 widget.Renamed +=

this.OnRenamed; .

Note: I completely ignored the subject of dual interfaces.
You can read about those if you

like,
but we won’t need to know about them for the job at hand.

Raymond Chen

Follow







http://blogs.msdn.com/b/oldnewthing/archive/2013/06/12/10425215.aspx#10425376
http://msdn.microsoft.com/library/66ahbe6y
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

